Skip to main content
Log in

Nonlinear stability for stationary helical vortices

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We present a stability result for stationary smooth helical ideal fluid flows by using the direct method of Liapunov. It is enunciated in terms of the norm \(L^{2}\) of the velocity and vorticity. A stability for monotonic helical vortices in the norm \(L^{1}\) is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.: Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Dokl. Nat. Nauk 162, 773–777 (1965)

    Google Scholar 

  2. Arnold, V.: On a priori estimate in the theory of hydrodynamical stability. Am. Math. Soc. Transl. 79, 267–269 (1969)

    Google Scholar 

  3. Beale, T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equation. Commun. Math. Phys. 94, 61–66 (1984)

    Article  Google Scholar 

  4. Bouchut, F.: Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal. 157, 75–90 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bronzi, A., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Global existence of a weak solution of the incompressible Euler equations with helical symmetry and \(L^{p}\) vorticity. Indiana Univ. Math. J. 64, 309–341 (2015)

    Article  MathSciNet  Google Scholar 

  6. Burton, G.: Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincare (C) Non Linear Anal. 6(4), 295–319 (1989)

    Article  MathSciNet  Google Scholar 

  7. Burton, G.: Global nonlinear stability for steady ideal fluid flow in bounded planar domains. Arch. Rational Mech. Anal. 176, 149–163 (2005)

    Article  MathSciNet  Google Scholar 

  8. Burton, G., Mcleod, J.B.: Maximisation and minimisation on classes of rearrangements. Proc. R. Soc. Edinb. 119, 287–300 (1991)

    Article  MathSciNet  Google Scholar 

  9. Caprino, S.: On nonlinear stability of stationary planar Euler flows in an unbounded strip. Nonlinear Anal. Theory Methods Appl. 10, 1263–1275 (1986)

    Article  MathSciNet  Google Scholar 

  10. Caprino, S.: On nonlinear stability of stationary Euler flows on a rotating sphere. J. Math. Anal. Appl. 129, 24–36 (1988)

    Article  MathSciNet  Google Scholar 

  11. Deem, G., Zabusky, N.: Vortex waves: stationary V-states, interactions, recurrence, and breaking. Phys. Rev. Lett. 40, 859–862 (1978)

    Article  Google Scholar 

  12. Diperna, R., Lions, P.: Ordinary differential equation, transport theory and Sobolev space. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  13. Dutrifoy, A.: Existence globale en temps de solutions hélicoïdales des équation d’Eler. C. R. Acad. Sci. Paris 329, 653–656 (1999)

    Article  MathSciNet  Google Scholar 

  14. Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  Google Scholar 

  15. Ettinger, B., Titi, E.: Global existence and uniqueness of weak solutions of three-dimensional Euler equations with helical symmetry in the absence of vorticity stretching. SIAM J. Math. Anal. 41, 269–296 (2009)

    Article  MathSciNet  Google Scholar 

  16. Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (2002)

    Google Scholar 

  17. Ferrari, A.: On the blow-up of solutions of the 3-D Euler equation in bounded domain. Commun. Math. Phys. 155, 277–294 (1993)

    Article  MathSciNet  Google Scholar 

  18. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  19. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, Hoboken (1989)

    MATH  Google Scholar 

  20. Lions, P.L.: Mathematical Topics in Fluid Mechanics- Vol. 1: Incompressible Models. Oxford Science Publications. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  21. Mahalov, A., Titi, E., Leibovich, S.: Invariant helical subspaces for the Navier–Stokes equations. Arch. Rational Mech. Anal. 112, 193–222 (1990)

    Article  MathSciNet  Google Scholar 

  22. Marchioro, C., Moauro, V.: A remark on the stability problem in fluid dynamics. J. Math. Anal. Appl. 128, 413–418 (1987)

    Article  MathSciNet  Google Scholar 

  23. Marchioro, C., Pulvirenti, M.: Some considerations on the nonlinear stability of stationary planar Euler flows. Commun. Math. Phys. 100, 343–354 (1985)

    Article  MathSciNet  Google Scholar 

  24. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, Berlin (1991)

    MATH  Google Scholar 

  25. Sideris, T., Vega, L.: Stability \(L^{1}\) of circular vortex patches. Proc. Am. Math. Soc. 137, 4199–4202 (2009)

    Article  Google Scholar 

  26. Wan, Y., Pulvirenti, M.: Nonlinear stability of circular vortex patches. Commun. Math. Phys. 99, 435–450 (1985)

    Article  MathSciNet  Google Scholar 

  27. Yudovich, V.I.: Non-stationary flow of an ideal incompressible liquid. USSR Comput. Math. Math. Phys. 3(6), 1407–1456 (1963)

    Article  Google Scholar 

  28. Zeytounian, RKh: Theory and Applications of Nonviscous Fluid Flows. Spring, Berlin (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maicon J. Benvenutti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenutti, M.J. Nonlinear stability for stationary helical vortices. Nonlinear Differ. Equ. Appl. 27, 15 (2020). https://doi.org/10.1007/s00030-020-0620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-020-0620-4

Keywords

Mathematics Subject Classification

Navigation