Skip to main content
Log in

Optimal regularity for all time for entropy solutions of conservation laws in \(BV^s\)

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

This paper deals with the optimal regularity for entropy solutions of conservation laws. For this purpose, we use two key ingredients: (a) fine structure of entropy solutions and (b) fractional BV spaces. We show that optimality of the regularizing effect for the initial value problem from \(L^\infty \) to fractional Sobolev space and fractional BV spaces is valid for all time. Previously, such optimality was proven only for a finite time, before the nonlinear interaction of waves. Here for some well-chosen examples, the sharp regularity is obtained after the interaction of waves. Moreover, we prove sharp smoothing in \(BV^s\) for a convex scalar conservation law with a linear source term. Next, we provide an upper bound of the maximal smoothing effect for nonlinear scalar multi-dimensional conservation laws and some hyperbolic systems in one or multi-dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adimurthi Dutta, R., Ghoshal, S.S., Veerappa Gowda, G.D.: Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux. Commun. Pure Appl. Math. 64(1), 84–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi Ghoshal, S.S., Veerappa Gowda, G.D.: Structure of entropy solutions to scalar conservation laws with strictly convex flux. J. Hyperbolic Differ. Equ. 4, 571–611 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi Ghoshal, S.S., Veerappa Gowda, G.D.: Exact controllability of scalar conservation law with strict convex flux. Math. Control Relat. Fields 4(4), 401–449 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adimurthi Ghoshal, S.S., Veerappa Gowda, G.D.: Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux. Rend. Semin. Mat. Univ. Padova 4(132), 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adimurthi Singh, M., Veerappa Gowda, G.D.: Lax-Oleǐnik explicit formula and structure theory for balance laws. J. Differ. Equ. 268(11), 6517–6575 (2020)

  6. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  7. Andreianov, B., Donadello, C., Ghoshal, S.S., Razafison, U.: On the attainability set for triangular type system of conservation laws with initial data control. J. Evol. Equ. 15(3), 503–532 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianchini, S., Marconi, E.: On the concentration of entropy for scalar conservation laws. Discrete Contin. Dyn. Syst. Ser. S 9(1), 73–88 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bianchini, S., Marconi, E.: On the structure of \(L^\infty \) entropy solutions to scalar conservation laws in one-space dimension. Arch. Mech. Anal. 226(1), 441–493 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. TMA 32, 891–933 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservations laws ans uniqueness. Commun. Partial Differ. Equ. 24(11–12), 2173–2189 (1999)

    MATH  Google Scholar 

  12. Bourdarias, C., Choudhury, A., Guelmame, B., Junca, S.:Entropy solutions in \(BV^s\) for a class of triangular systems involving a transport equation. Preprint (2020) (hal-02895603)

  13. Bourdarias, C., Gisclon, M., Junca, S.: Fractional \(BV\) spaces and first applications to conservation laws. J. Hyperbolic Differ. Equ. 11(4), 655–677 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Bourdarias, C., Gisclon, M., Junca, S., Peng, Y.-J.: Eulerian and Lagrangian formulations in \(BV^s\) for gas-solid chromatography. Commun. Math. Sci. 14(6), 1665–1685 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Bressan, A.: Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  16. Bruneau, M.: La variation totale d’une fonction. Lecture Notes in Mathematics, vol. 413, p. 332. Springer, Berlin (1974). (French)

    Book  MATH  Google Scholar 

  17. Castelli, P., Jabin, P.-E., Junca, S.: Fractional spaces and conservation laws. In: Springer Proceedings in Mathematics & Statistics, vol. 236, pp. 285–293 (2018)

  18. Castelli, P., Junca, S.: Oscillating waves and the maximal smoothing effect for one dimensional nonlinear conservation laws. AIMS Appl. Math. 8, 709–716 (2014)

    Google Scholar 

  19. Castelli, P., Junca, S.: Smoothing effect in \(BV-\Phi \) for entropy solutions of scalar conservation laws. J. Math. Anal. Appl. 451(2), 712–735 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Castelli, P., Junca, S.: On the maximal smoothing effect for multidmensional scalar conservation laws. Nonlinear Anal. 155, 207–218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, K.S.: The space \(BV\) is not enough for hyperbolic conservation laws. J. Math. Anal. Appl. 91(2), 559–561 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Cheverry, C.: Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. Henri Poincare Anal. Nonlinaire 17(4), 413–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Crippa, G., Otto, F., Westdickenberg, M.: Regularizing Effect of Nonlinearity in Multidimensional Scalar Conservation Laws, Transport Equations and Multi-D Hyperbolic Conservation Laws. Lecture Notes of the Unione Matematica Italiana, vol. 5, pp. 77–128. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  24. De Lellis, C.: Blowup of the BV norm in the multidimensional Keyfitz and Kranzer system. Duke Math. J. 127(2), 313–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. De Lellis, C., Westdickenberg, M.: On the optimality of velocity averaging lemmas. Ann. Inst. Henri Poincare Anal. Nonlinaire 20(6), 1075–1085 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gess, B., Lamy, X.: Regularity of solutions to scalar conservation laws with a force. Ann. Inst. Henri Poincaré Anal. Non Linéaire 36(2), 505–521 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghoshal, S.S.: Optimal results on TV bounds for scalar conservation laws with discontinuous flux. J. Differ. Equ. 258(3), 980–1014 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghoshal, S.S., Jana, A.: Non existence of the BV regularizing effect for scalar conservation laws in several space dimension. Preprint (2019). (arXiv:1808.00289)

  29. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel (1984)

    Book  MATH  Google Scholar 

  30. Guelmame, B., Junca, S., Clamond, D.: Regularizing effect for conservation laws with a Lipschitz convex flux. Commun. Math. Sci. 17(8), 2223–2238 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jabin, P. E.: Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws. Séminaire Équations aux dérivées partielles (Polytechnique), 2009, 2008

  32. Junca, S.: High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws. SIAM J. Math. Anal. 46(3), 2160–2184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Junca, S., Lombard, B.: Analysis of a Sugimoto’s model of nonlinear acoustics in an array of Helmholtz resonators. SIAM J. Appl. Math. 80(4), 1704–1722 (2020)

  34. Keyfitz, B.L., Kranzer, H.C.: A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Ration. Mech. Anal. 72(3), 219–241 (1979/80)

  35. Kružkov, S.N.: First-order quasilinear equations with several space variables. Mat. Sbornik, 123, 228–255; Math. USSR Sbornik 10, 217–273 (1970) (in English)

  36. Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10(4), 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lions, P.-L., Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Am. Math. Soc. 7, 169–192 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marconi, E.: Regularity estimates for scalar conservation laws in one space dimension. J. Hyperbolic Differ. Equ. 15(4), 623–691 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marconi, E.: Structure and regularity of solutions to 1D scalar conservation laws. In: Proceeings of Hyp, pp. 549–556 (2018)

  40. Musielak, J., Orlicz, W.: On generalized variations. I. Stud. Math. 18, 11–41 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oleǐnik, O.-A.: Discontinuous solutions of nonlinear differential equations. Uspehi Mat. Nauk (NS), 12, 3(75), 3–73, (1957) (in Russian), Transl. Am. Math. Soc. Ser. 2(26), 95–172 (1963) (in English)

  42. Panov, E.Y.: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2(04), 885–908 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Panov, E.Y.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4(04), 729–770 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tadmor, E., Tao, T.: Velocity averaging, kinetic formulations and regularizing effects in quasi-linear PDEs. Commun. Pure Appl. Math. 60(10), 1488–1521 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank the anonymous referee for valuable comments and suggestions. The first author would like to thank Inspire faculty-research Grant DST/INSPIRE/04/2016/000237. Authors would like to thank the IFCAM project “Conservation laws: \(BV^s\), interface and control”. The first and third authors acknowledge the support of the Department of Atomic Energy, Government of India, under Project No. 12-R&D-TFR-5.01-0520. The second and the fourth authors would like to thank TIFR-CAM for the hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Sundar Ghoshal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, S.S., Guelmame, B., Jana, A. et al. Optimal regularity for all time for entropy solutions of conservation laws in \(BV^s\). Nonlinear Differ. Equ. Appl. 27, 46 (2020). https://doi.org/10.1007/s00030-020-00649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-020-00649-5

Keywords

Mathematics Subject Classification

Navigation