Skip to main content
Log in

Synchronization of stochastic lattice equations

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper we consider a system of two coupled nonlinear lattice stochastic equations driven by additive white noise processes. We prove the master slave synchronization of the components of the coupled system, namely, for \(t\rightarrow \infty \) the solution of one of the subsystems (the slave component) converges to the values of a Lipschitz continuous function of the other component, the master component. To establish this kind of synchronization we will prove the existence of an exponentially attracting random invariant manifold for the coupled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afraimovich, V.S., Chow, S.-N., Hale, J.K.: Synchronization in lattices of coupled oscillators. Physica D 103(1–4), 442–451 (1997). Lattice dynamics (Paris, 1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  3. Bensoussan, A., Flandoli, F.: Stochastic inertial manifold. Stoch. Stoch. Rep. 53(1–2), 13–39 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessaih, H., Garrido-Atienza, M.J., Han, X., Schmalfuß, B.: Stochastic lattice dynamical systems with fractional noise. SIAM J. Math. Anal. 49(2), 1495–1518 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessaih, H., Garrido-Atienza, M.J., Schmalfuß, B.: Stochastic shell models driven by a multiplicative fractional Brownian motion. Physica D 320, 38–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binczak, S., Eilbeck, J.C., Scott, A.C.: Ephaptic coupling of myelinated nerve fibers. Physica D 148(1–2), 159–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caraballo, T., Duan, J., Lu, K., Schmalfuß, B.: Invariant manifolds for random and stochastic partial differential equations. Adv. Nonlinear Stud. 10(1), 23–52 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Carvalho, A.N., Rodrigues, H.M., Dłotko, T.: Upper semicontinuity of attractors and synchronization. J. Math. Anal. Appl. 220(1), 13–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chow, S.-N.: Lattice dynamical systems. In: Macki, J.W., Zecca, P. (eds.) Dynamical Systems, Volume 1822 of Lecture Notes in Mathematics, pp. 1–102. Springer, Berlin (2003)

  10. Chow, S.-N., Lu, K.: Invariant manifolds for flows in Banach spaces. J. Differ. Equ. 74(2), 285–317 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(10), 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  13. Chueshov, I.D.: Approximate inertial manifolds of exponential order for semilinear parabolic equations subjected to additive white noise. J. Dyn. Differ. Equ. 7(4), 549–566 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chueshov, I.: Invariant manifolds and nonlinear master–slave synchronization in coupled systems. Appl. Anal. 86(3), 269–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chueshov, I.D., Scheutzow, M.: Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations. J. Dyn. Differ. Equ. 13(2), 355–380 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chueshov, I., Scheutzow, M., Schmalfuß, B.: Continuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations. In: Interacting Stochastic Systems, pp. 353–375. Springer, Berlin (2005)

  17. Chueshov, I., Schmalfuß, B.: Master–slave synchronization and invariant manifolds for coupled stochastic systems. J. Math. Phys. 51(10), 102702 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Volume 70 of Applied Mathematical Sciences. Springer, New York (1989)

    Book  MATH  Google Scholar 

  19. Constantin, P., Levant, B., Titi, E.S.: Analytic study of shell models of turbulence. Physica D 219(2), 120–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duan, J., Lu, K., Schmalfuß, B.: Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31(4), 2109–2135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duan, J., Lu, K., Schmalfuß, B.: Smooth stable and unstable manifolds for stochastic evolutionary equations. J. Dyn. Differ. Equ. 16(4), 949–972 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction–diffusion systems. Physica D 67(1–3), 237–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Flandoli, F., Gess, B., Scheutzow, M.: Synchronization by noise for order-preserving random dynamical systems. Ann. Probab. 45(2), 1325–1350 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73(2), 309–353 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garrido-Atienza, M.J., Lu, K., Schmalfuß, B.: Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion. J. Differ. Equ. 248(7), 1637–1667 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Girya, T.V., Chueshov, I.D.: Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Mat. Sb. 186(1), 29–46 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gu, A., Zeng, C., Li, Y.: Synchronization of systems with fractional environmental noises on finite lattice. Fract. Calc. Appl. Anal. 18(4), 891–910 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hadamard, J.: Sur lteration et les solutions asymptotiques des equations differentielles. Bull. Soc. Math. Fr. 29(1), 224–228 (1901)

    MATH  Google Scholar 

  29. Huygens, C.: The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks. Iowa State University Press Series in the History of Technology and Science. Iowa State University Press, Ames, IA: Translated from the Latin and with a preface and notes by Richard J. Blackwell, With an introduction by H. J. M. Bos (1986)

  30. Köpp, V.: Random dynamics of lattice equations. Master thesis (2019)

  31. Lyapunov, A.: Problème Général de la Stabilité du Mouvement. Annals of Mathematics Studies, vol. 17. Princeton University Press, Oxford University Press, Princeton, London (1947)

    Google Scholar 

  32. Mendelson, D., Tomberg, A.: Spectral theorem for bounded self-adjoint operators. McGill Undergrad. Math. J. http://www.math.mcgill.ca/jakobson/courses/ma667/mendelsontomberg-spectral.pdf

  33. Miklavčič, M.: A sharp condition for existence of an inertial manifold. J. Dyn. Differ. Equ. 3(3), 437–456 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Øksendal, B.: Stochastic Differential Equations. Universitext. An Introduction with Applications, 6th edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  35. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Perron, O.: Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen. Math. Z. 29(1), 129–160 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  37. Perron, O.: Über Stabilität und asymptotisches Verhalten der Lösungen eines Systems endlicher Differenzengleichungen. J. Reine Angew. Math. 161, 41–64 (1929)

    MathSciNet  MATH  Google Scholar 

  38. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series, vol. 12. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  39. Ramirez, J., Olvera, L.A., Nijmeijer, H., Alvarez, J.: The sympathy of two pendulum clocks: beyond Huygens’ observations. Sci. Rep. 6(23518), 442–451 (2016)

    Google Scholar 

  40. Torres, P.J.: Periodic motions of forced infinite lattices with nearest neighbor interaction. Z. Angew. Math. Phys. 51(3), 333–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tresser, C., Worfolk, P.A., Bass, H.: Master–slave synchronization from the point of view of global dynamics. Chaos 5(4), 693–699 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first, second and forth author like to thank the Banff International Research Station (Banff, Canada). They were part of the Focussed Research Group (17frg671), and during their stay in the Station in September of 2017 they worked about the topic of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakima Bessaih.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Spectrum of the linear operator

Appendix: Spectrum of the linear operator

Consider \(l_2\) to be the space of square summable sequences with index set \(\mathbb {Z}\) in \(\mathbb {C}\). We define a mapping into the space of square integrable complex functions

$$\begin{aligned} \Phi : l_2\leftrightarrow L_2\left( 0,2\pi ,\frac{d\xi }{2 \pi }\right) \end{aligned}$$

such that for \(X=(x_n)_{n\in \mathbb {Z}}\) we obtain the function \(f:=\Phi (X)\) defined by

$$\begin{aligned} f(\xi )= \sum _{i\in \mathbb {Z}} x_ne^{i n \xi }\in L_2\left( 0,2\pi ,\frac{d\xi }{2 \pi }\right) , \end{aligned}$$
(4.1)

and vice versa, for a given \(f\in L_2(0,2\pi ,\frac{d\xi }{2 \pi })\) the sequence \(X=(x_n)_{n\in \mathbb {N}}\) is defined by the Fourier coefficients of f, that is,

$$\begin{aligned} x_n= \frac{1}{2\pi } \int _0^{2\pi } e^{-in\xi }f(\xi )d\xi . \end{aligned}$$

In particular, \(\Phi \) is a unitary transformation.

Consider \(A: l_2\rightarrow l_2\) to be the discrete Laplacian operator given by

$$\begin{aligned} (Ax)_n=x_{n-1}-2x_n+x_{n+1}\quad \text {for }n\in \mathbb {Z}. \end{aligned}$$

Following Chow [10] or Mendelson and Tomberg [32], we have

$$\begin{aligned} (A(\Phi ^{-1}f))_n&=(\Phi ^{-1}f)_{n-1}-2(\Phi ^{-1}f)_n+(\Phi ^{-1}f)_{n+1}\\&=\frac{1}{2\pi }\int _0^{2\pi }\bigg (e^{-i(n+1)\xi }-2e^{-in\xi } +e^{-i(n-1)\xi }\bigg )f(\xi )d\xi \\&=\frac{1}{2\pi }\int _0^{2\pi }e^{-in\xi }\bigg (e^{-i\xi }-2+e^{i \xi }\bigg )f(\xi )d\xi \\&=\frac{1}{2\pi }\int _0^{2\pi }e^{-in\xi }\bigg (2\cos \xi -2\bigg )f(\xi )d\xi , \end{aligned}$$

such that

$$\begin{aligned} \Phi A\Phi ^{-1}f[\xi ]=(2\cos \xi -2)f(\xi ). \end{aligned}$$

Note that \(\lambda \in \mathbb {C}\) is not an element of the spectrum of \(\Phi A\Phi ^{-1}\) if and only if

$$\begin{aligned} \lambda -2\cos \xi +2\not =0\quad \text {for all }\xi \in [0,2\pi ] \end{aligned}$$

which is the case when \(\lambda \not \in [-4,0]\). Since \(\Phi A\Phi ^{-1}\) and A have the same spectrum (because \(\Phi \) is a unitary transformation), we have proved the following result.

Lemma 4.1

The operator A has the spectrum \([-4,0]\in \mathbb {C}\).

Now we consider a generalization of the discrete Laplacian operator in \(l_2\) in the following way. Let \(c=(c_k)_{k\in \mathbb {Z}}\in l_{1}\). We define the operator A given by

$$\begin{aligned} (Au)_n= \sum _{k\in \mathbb {Z}} c_{ k}u_{n+ k} . \end{aligned}$$
(4.2)

This operator gives a linear coupling between all (and not only neighborhood) nodes of the lattice. The property \(c\in l_{1}\) expresses that the intensity of the coupling gets tendency smaller if the distance between the indices of the nodes gets larger. Assuming that \(c_k=c_{-k}\) and \(c_0=-2\), then the operator A can be rewritten as

$$\begin{aligned} (Au)_n= \sum _{k\in \mathbb {N}} c_{ k}(u_{n+ k}+u_{n-k})-2u_n, \end{aligned}$$
(4.3)

thus substituting \(c_k\) by \(a_{ki}\) then we have \(A=\tilde{A}_i\), the operators defined by (2.3) in Sect. 2 . Therefore, under the above assumptions on \(c_k\), the following considerations allow to prove the properties of \(\tilde{A}_i\).

Lemma 4.2

Assume \((c_{k})_{k\in \mathbb {Z}}\in l_1(\mathbb {R})\).

  1. 1.

    A given by (2.4) is in \(L(l_2)\).

  2. 2.

    If moreover we assume that \(c_k=c_{-k}\), \(c_0=-2\) and

    $$\begin{aligned} \sum _{k\in \mathbb {N}}|c_k|\le 1, \end{aligned}$$
    (4.4)

    then the operator A given by (4.3) has a spectrum the interval \([-4,0]\). Furthermore, \(-A\) is non negative definite and symmetric.

Proof

(1) We prove that A given by (4.2) is a well defined operator from \(l_2\) into \(l_2\). Consider \(u\in l_2\), then we have

$$\begin{aligned} \Vert Au\Vert ^2= \sum _{n\in \mathbb {Z}}\bigg (\sum _{k\in \mathbb {Z}} c_k u_{n+k}\bigg )^2&= \sum _{n\in \mathbb {Z}}\sum _{k,l\in \mathbb {Z}} c_k c_lu_{n+k}\bar{u}_{n+l} \\&\le \sum _{n\in \mathbb {Z}}\sum _{k,l\in \mathbb {Z}}|c_k||c_l||u_{n+k}||u_{n+l}|\\&=\sum _{k,l\in \mathbb {Z}}|c_k||c_l|\sum _{n\in \mathbb {Z}} |u_{n+k}||u_{n+l}|\\&\le \sum _{k,l\in \mathbb {Z}}|c_k||c_l|\Vert u\Vert ^2\le \Vert c\Vert _{l_1}^2\Vert u\Vert ^2 \end{aligned}$$

by Tonelli’s theorem.

(2) Now we prove the properties on A given by (4.3). Note that for the mapping \(\Phi \) defined in (4.1) we obtain

$$\begin{aligned} \Phi A\Phi ^{-1}f[\xi ]=\left( 2\sum _{k\in \mathbb {N}}c_k\cos (k\xi )-2\right) f(\xi ). \end{aligned}$$

To see this property, observe that

$$\begin{aligned} (A(\Phi ^{-1}f))_n=&\sum _{k\in \mathbb {N}} c_{ k}((\Phi ^{-1}f)_{n+ k}+(\Phi ^{-1}f)_{n-k})-2(\Phi ^{-1}f)_n\\ =&\sum _{k\in \mathbb {N}} c_{ k} \bigg (\frac{1}{2\pi }\int _0^{2\pi }\bigg (e^{-i(n+k)\xi } +e^{-i(n-k)\xi }\bigg )f(\xi )d\xi \bigg )-\frac{2}{2\pi }\int _0^{2\pi } e^{-in\xi } f(\xi )d\xi \\ =&\sum _{k\in \mathbb {N}} c_{ k} \frac{1}{2\pi }\int _0^{2\pi } 2 \cos (k\xi )e^{-in\xi } f(\xi )d\xi -\frac{2}{2\pi }\int _0^{2\pi } e^{-in\xi } f(\xi )d\xi \\ =&\frac{1}{2\pi }\int _0^{2\pi }e^{-in\xi } \bigg (2\sum _{k\in \mathbb {N}}c_k\cos (k\xi )-2\bigg )f(\xi )d\xi . \end{aligned}$$

Thanks to (4.4) the image of

$$\begin{aligned}{}[0,2\pi ]\ni \xi \mapsto 2\sum _{k\in \mathbb {N}}c_k\cos (k\xi )-2 \end{aligned}$$

is in \([-4,0]\). Then the spectrum has the desired properties.

Finally, \(-A\) is a non negative operator, which follows from

$$\begin{aligned} \begin{aligned} -(A u,u)_{l_2}&=-(\Phi A u,\Phi u)_{L_2}=-(\Phi A \Phi ^{-1}f,f)_{L_2}\\&=\frac{1}{2\pi }\int _0^{2\pi }e^{-in\xi }\bigg (2-2\sum _{k\in \mathbb {N}}c_k\cos (k\xi )\bigg )f(\xi ) f(\xi )d\xi \\&=\left( \sqrt{2-2\sum _{k\in \mathbb {N}}c_k\cos (k\cdot )}\,f(\cdot ), \sqrt{2-2\sum _{k\in \mathbb {N}}c_k\cos (k\cdot )}\,f(\cdot )\right) _{L_2}\ge 0 \end{aligned} \end{aligned}$$

Above we have used that unitary mappings do not change the inner product.

Finally, we omit the proof of symmetry which is based on the assumption \(c_k=c_{-k},\, k\in \mathbb {N}\). \(\square \)

Now we prove Lemma 2.1.

Proof

\(S_2(t)\) is defined by the equation

$$\begin{aligned} \frac{dv}{dt}=A_2v,\quad v(0)=v_0\in l_2, \end{aligned}$$

then, since \(-A_2\) is non negative definite and symmetric,

$$\begin{aligned} \frac{d\Vert v(t)\Vert ^2}{dt}=2(A_2v(t),v(t))\le -2\lambda _2\Vert v(t)\Vert ^2. \end{aligned}$$

Now we consider \(S_1\) given by

$$\begin{aligned} \frac{dv}{dt}=A_1v,\quad v(0)=v_0\in l_2. \end{aligned}$$

Define for \(t\le 0\) the function \(w(t)=v(-t)\). Then

$$\begin{aligned} \frac{dw(t)}{dt}=\frac{dv(-t)}{dt}(-1)=-A_1 w(t),\quad v(0)=w(0)=v_0\in l_2. \end{aligned}$$

We therefore have

$$\begin{aligned} \frac{d\Vert w(t)\Vert ^2}{dt}=-2(A_1w(t),w(t))\le 2(4+\lambda _1)\Vert w(t)\Vert ^2 \end{aligned}$$

which follows from Lemma 4.2. Now

$$\begin{aligned} \Vert v(t)\Vert ^2=\Vert w(-t)\Vert ^2\le \Vert v_0\Vert ^2e^{2(4+\lambda _1)(-t)}=\Vert v_0\Vert ^2e^{-2(4+\lambda _1)t}. \end{aligned}$$

\(\square \)

Remark 4.3

A generalization of the Eq. (2.1) to \(\mathbb {Z}^d\) can be found in the Master thesis of Köpp [30], where the spectral properties of the associated operator A are studied thoroughly, with its asymptotic properties in terms of the random attractor. These results will be used for a forthcoming investigation of the master slave synchronization for system (2.2) in generalizations of the operators \(A_1,\,A_2\) acting on \(\mathbb {Z}^d\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessaih, H., Garrido-Atienza, M.J., Köpp, V. et al. Synchronization of stochastic lattice equations. Nonlinear Differ. Equ. Appl. 27, 36 (2020). https://doi.org/10.1007/s00030-020-00640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-020-00640-0

Mathematics Subject Classification

Keywords

Navigation