Skip to main content
Log in

Sharp semi-concavity in a non-autonomous control problem and \(\pmb {L^p}\) estimates in an optimal-exit MFG

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

This paper studies a mean field game inspired by crowd motion in which agents evolve in a compact domain and want to reach its boundary minimizing the sum of their travel time and a given boundary cost. Interactions between agents occur through their dynamic, which depends on the distribution of all agents. We start by considering the associated optimal control problem, showing that semi-concavity in space of the corresponding value function can be obtained by requiring as time regularity only a lower Lipschitz bound on the dynamics. We also prove differentiability of the value function along optimal trajectories under extra regularity assumptions. We then provide a Lagrangian formulation for our mean field game and use classical techniques to prove existence of equilibria, which are shown to satisfy a MFG system. Our main result, which relies on the semi-concavity of the value function, states that an absolutely continuous initial distribution of agents with an \(L^p\) density gives rise to an absolutely continuous distribution of agents at all positive times with a uniform bound on its \(L^p\) norm. This is also used to prove existence of equilibria under fewer regularity assumptions on the dynamics thanks to a limit argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Google Scholar 

  2. Achdou, Y., Porretta, A.: Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM J. Numer. Anal. 54(1), 161–186 (2016)

    Google Scholar 

  3. Achdou, Y., Porretta, A.: Mean field games with congestion. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(2), 443–480 (2018)

    Google Scholar 

  4. Albi, G., Bongini, M., Cristiani, E., Kalise, D.: Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math. 76(4), 1683–1710 (2016)

    Google Scholar 

  5. Ambrosio, L.: Transport equation and Cauchy problem for non-smooth vector fields. In Calculus of variations and nonlinear partial differential equations, volume 1927 of Lecture Notes in Math., pages 1–41. Springer, Berlin, (2008)

  6. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    Google Scholar 

  7. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)

    Google Scholar 

  8. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston. Reprint of the 1990 edition (2009)

  9. Benamou, J.-D., Carlier, G., Santambrogio, F.: Variational mean field games. In: Active Particles. Vol. 1. Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., pp. 141–171. Birkhäuser/Springer, Cham (2017)

  10. Bensoussan, A., Frehse, J., Yam, S.C.P.: On the interpretation of the Master Equation. Stoch. Process. Appl. 127(7), 2093–2137 (2017)

    Google Scholar 

  11. Bourbaki, N.: Topologie Générale. Chapitres 5 à 10. Éléments de Mathématique. Springer, Berlin (2007)

  12. Burger, M., Francesco, M.D., Markowich, P.A., Wolfram, M.-T.: On a mean field game optimal control approach modeling fast exit scenarios in human crowds. In: 52nd IEEE Conference on Decision and Control. IEEE (2013)

  13. Cacace, S., Camilli, F., Marchi, C.: A numerical method for mean field games on networks. ESAIM Math. Model. Numer. Anal. 51(1), 63–88 (2017)

    Google Scholar 

  14. Camilli, F., Carlini, E., Marchi, C.: A model problem for mean field games on networks. Discrete Contin. Dyn. Syst. 35(9), 4173–4192 (2015)

    Google Scholar 

  15. Cannarsa, P., Capuani, R.: Existence and uniqueness for mean field games with state constraints. In: PDE Models for Multi-agent Phenomena, Volume 28 of Springer INdAM Ser., pp. 49–71. Springer, Cham (2018)

  16. Cannarsa, P., Frankowska, H.: Local regularity of the value function in optimal control. Syst. Control Lett. 62(9), 791–794 (2013)

    Google Scholar 

  17. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58. Birkhäuser Boston Inc, Boston (2004)

    Google Scholar 

  18. Cardaliaguet, P.: Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3(4), 473–488 (2013)

    Google Scholar 

  19. Cardaliaguet, P.: Notes on mean field games (from P.-L. Lions’ lectures at Collège de France). https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf (2013)

  20. Cardaliaguet, P.: Weak solutions for first order mean field games with local coupling. In: Analysis and Geometry in Control Theory and Its Applications, Volume 11 of Springer INdAM Ser., pp. 111–158. Springer, Cham (2015)

  21. Cardaliaguet, P.: The convergence problem in mean field games with local coupling. Appl. Math. Optim. 76(1), 177–215 (2017)

    Google Scholar 

  22. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L.: The Master Equation and the Convergence Problem in Mean Field Games, vol. 201. Princeton University Press, Princeton (2019). Annals of Mathematics Studies

    Google Scholar 

  23. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Porretta, A.: Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51(5), 3558–3591 (2013)

    Google Scholar 

  24. Cardaliaguet, P., Mészáros, A.R., Santambrogio, F.: First order mean field games with density constraints: pressure equals price. SIAM J. Control Optim. 54(5), 2672–2709 (2016)

    Google Scholar 

  25. Carlier, G., Jimenez, C., Santambrogio, F.: Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47(3), 1330–1350 (2008)

    Google Scholar 

  26. Carlier, G., Santambrogio, F.: A continuous theory of traffic congestion and Wardrop equilibria. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390 (Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XX):69–91, 307–308 (2011)

  27. Carlini, E., Silva, F.J.: A fully discrete semi-Lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52(1), 45–67 (2014)

    Google Scholar 

  28. Carmona, R., Delarue, F.: The master equation for large population equilibriums. In: Stochastic Analysis and Applications 2014, Volume 100 of Springer Proc. Math. Stat., pp. 77–128. Springer, Cham (2014)

  29. Cirant, M., Tonon, D.: Time-dependent focusing mean-field games: the sub-critical case. J. Dyn. Differ. Equ. 31(1), 49–79 (2019)

    Google Scholar 

  30. Colombo, R.M., Rosini, M.D.: Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28(13), 1553–1567 (2005)

    Google Scholar 

  31. Cristiani, E., Priuli, F.S.: A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Netw. Heterog. Media 10(4), 857–876 (2015)

    Google Scholar 

  32. Cristiani, E., Priuli, F.S., Tosin, A.: Modeling rationality to control self-organization of crowds: an environmental approach. SIAM J. Appl. Math. 75(2), 605–629 (2015)

    Google Scholar 

  33. Delfour, M.C., Zolésio, J.-P.: Shape analysis via oriented distance functions. J. Funct. Anal. 123(1), 129–201 (1994)

    Google Scholar 

  34. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Google Scholar 

  35. Dweik, S.: Optimal transportation with boundary costs and summability estimates on the transport density. J. Convex Anal. 25(1), 135–160 (2018)

    Google Scholar 

  36. Evangelista, D., Ferreira, R., Gomes, D.A., Nurbekyan, L., Voskanyan, V.: First-order, stationary mean-field games with congestion. Nonlinear Anal. 173, 37–74 (2018)

    Google Scholar 

  37. Faure, S., Maury, B.: Crowd motion from the granular standpoint. Math. Models Methods Appl. Sci. 25(3), 463–493 (2015)

    Google Scholar 

  38. Gomes, D.A., Mitake, H.: Existence for stationary mean-field games with congestion and quadratic Hamiltonians. NoDEA Nonlinear Differ. Equ. Appl. 22(6), 1897–1910 (2015)

    Google Scholar 

  39. Gomes, D.A., Mohr, J., Souza, R.R.: Continuous time finite state mean field games. Appl. Math. Optim. 68(1), 99–143 (2013)

    Google Scholar 

  40. Gomes, D.A., Saúde, J.: Mean field games models—a brief survey. Dyn. Games Appl. 4(2), 110–154 (2014)

    Google Scholar 

  41. Gomes, D.A., Voskanyan, V.K.: Short-time existence of solutions for mean-field games with congestion. J. Lond. Math. Soc. (2) 92(3), 778–799 (2015)

    Google Scholar 

  42. Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003)

    Google Scholar 

  43. Guéant, O.: New numerical methods for mean field games with quadratic costs. Netw. Heterog. Media 7(2), 315–336 (2012)

    Google Scholar 

  44. Guéant, O.: Existence and uniqueness result for mean field games with congestion effect on graphs. Appl. Math. Optim. 72(2), 291–303 (2015)

    Google Scholar 

  45. Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean field games and applications. In: Paris-Princeton Lectures on Mathematical Finance 2010, Volume 2003 of Lecture Notes in Math., pp. 205–266. Springer, Berlin (2011)

  46. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487 (2000)

    Google Scholar 

  47. Henderson, L.F.: The statistics of crowd fluids. Nature 229(5284), 381–383 (1971)

    Google Scholar 

  48. Huang, M., Caines, P.E., Malhamé, R.P.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: 42nd IEEE Conference on Decision and Control, 2003. Proceedings, Volume 1, pp. 98–103. IEEE (2003)

  49. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Automat. Control 52(9), 1560–1571 (2007)

    Google Scholar 

  50. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251 (2006)

    Google Scholar 

  51. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B Methodol. 36(6), 507–535 (2002)

    Google Scholar 

  52. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182 (2003)

    Google Scholar 

  53. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8, 457–459 (1941)

    Google Scholar 

  54. Kolokoltsov, V.N., Troeva, M., Yang, W.: On the rate of convergence for the mean-field approximation of controlled diffusions with large number of players. Dyn. Games Appl. 4(2), 208–230 (2014)

    Google Scholar 

  55. Lachapelle, A., Wolfram, M.-T.: On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res. Part B Methodol. 45(10), 1572–1589 (2011)

    Google Scholar 

  56. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Google Scholar 

  57. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Google Scholar 

  58. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Google Scholar 

  59. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Google Scholar 

  60. Mazanti, G., Santambrogio, F.: Minimal-time mean field games. Math. Models Methods Appl. Sci. 29(8), 1413–1464 (2019)

    Google Scholar 

  61. Mészáros, A.R., Silva, F.J.: A variational approach to second order mean field games with density constraints: the stationary case. J. Math. Pures Appl. (9) 104(6), 1135–1159 (2015)

    Google Scholar 

  62. Piccoli, B., Tosin, A.: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199(3), 707–738 (2011)

    Google Scholar 

  63. Prosinski, A., Santambrogio, F.: Global-in-time regularity via duality for congestion-penalized mean field games. Stochastics 89(6–7), 923–942 (2017)

    Google Scholar 

  64. Santambrogio, F.: Optimal Transport for Applied Mathematicians, Volume 87 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser/Springer, Cham (2015). Calculus of variations, PDEs, and modeling

  65. Villani, C.: Optimal Transport, Volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009) (Old and new)

  66. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1(3), 325–362 (1952)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Filippo Santambrogio for the fruitful discussions that lead to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer Dweik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by a public grant as part of the “Investissement d’avenir” project, reference ANR-11-LABX-0056-LMH, LabEx LMH, PGMO project VarPDEMFG. The first author was also partially supported by the by the French ANR project “GEOMETRYA”, reference ANR-12-BS01-0014, and by the Région Ile-de-France. The second author was also partially supported by the French ANR project “MFG”, reference ANR-16-CE40-0015-01, and by the Hadamard Mathematics LabEx (LMH) through the Grant No. ANR-11-LABX-0056-LMH in the “Investissement d’avenir” project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dweik, S., Mazanti, G. Sharp semi-concavity in a non-autonomous control problem and \(\pmb {L^p}\) estimates in an optimal-exit MFG. Nonlinear Differ. Equ. Appl. 27, 11 (2020). https://doi.org/10.1007/s00030-019-0612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0612-4

Mathematics Subject Classification

Keywords

Navigation