Skip to main content
Log in

Scattering threshold for the focusing Choquard equation

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

It is the purpose of this note, to obtain a scattering versus finite time blow-up dichotomy for a mass super-critical and energy sub-critical Choquard equation in the energy space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  2. Bonanno, C., d’Avenia, P., Ghimenti, M., Squassina, M.: Soliton dynamics for the generalized Choquard equation. J. Math. Anal. Appl. 417, 180–199 (2014)

    Article  MathSciNet  Google Scholar 

  3. Chen, J., Guo, B.: Strong instability of standing waves for a nonlocal Schrödinger equation. Physica D Nonlinear Phenom. 227, 142–148 (2007)

    Article  Google Scholar 

  4. Christ, M., Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  5. Cho, Y., Hwang, G., Ozawa, T.: Global well-posedness of critical nonlinear Schrödinger equations below \(L^2\). Discrete Contin. Dyn. Syst. A 44, 1389–1405 (2013)

    MATH  Google Scholar 

  6. Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11(3), 355–365 (2009). MR 2538202 (2010h:46039)

    Article  MathSciNet  Google Scholar 

  7. Duyckaerts, T., Merle, F.: Dynamic of thresholds solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009)

    Article  MathSciNet  Google Scholar 

  8. Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation. Commun. Math. Phys. 334, 1573–1615 (2015)

    Article  MathSciNet  Google Scholar 

  9. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60, 500–545 (2007)

    Article  MathSciNet  Google Scholar 

  10. Feng, B., Yuan, X.: On the Cauchy problem for the Schrödinger–Hartree equation. Evolut. Equ. Control Theory 4(4), 431–445 (2015)

    Article  Google Scholar 

  11. Gaididei, Y.B., Rasmussen, K.O., Christiansen, P.L.: Nonlinear excitations in two-dimensional molecular structures with impurities. Phys. Rev. E 52, 2951–2962 (1995)

    Article  Google Scholar 

  12. Gao, Y., Wang, Z.: Scattering versus blow-up for the focusing \(L^2\) supercritical Hartree equation. Math. Phys. 65, 179–202 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Genev, H., Venkov, G.: Soliton and blow-up solutions to the time-dependent Schrödinger Hartree equation. Discrete Contin. Dyn. Syst. Ser. S 5, 903–923 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gross, E.P., Meeron, E.: Physics of Many-Particle Systems, vol. 1, pp. 231–406. Gordon Breach, New York (1966)

    Google Scholar 

  15. Guevara, C.D.: Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation. Appl. Math. Res. eXpress 2, 177–243 (2014)

    MATH  Google Scholar 

  16. Guo, Q.: Scattering for the focusing \(L^2\) -supercritical and \({\dot{H}}^2\)-subcritical biharmonic NLS equations. Commun. Partial Differ. Equ. 41(2), 185–207 (2016)

    Article  Google Scholar 

  17. Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  18. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282, 435–467 (2008)

    Article  Google Scholar 

  19. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  Google Scholar 

  20. Le Coz, S.: A note on Berestycki–Cazenave classical instability result for nonlinear Schrödinger equations. Adv. Nonlinear Stud. 8(3), 455–463 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10, 43–64 (2007)

    Article  MathSciNet  Google Scholar 

  22. Lewin, M., Rougerie, N.: Derivation of Pekar’s polarons from a microscopic model of quantum crystal. SIAM J. Math. Anal. 45, 1267–1301 (2013)

    Article  MathSciNet  Google Scholar 

  23. Lieb, E.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  24. Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(3), 315–334 (1982)

    Article  Google Scholar 

  25. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  26. Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data. J. Func. Anal. 253(2), 605–627 (2007)

    Article  MathSciNet  Google Scholar 

  27. Miao, C., Xu, G., Zhao, L.: The cauchy problem of the Hartree equation. J. PDE 21, 22–44 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Moroz, V., Schaftingen, J.V.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  29. Payne, L.E., Sattinger, D.H.: Saddle points and instability of non-linear hyperbolic equations. Isr. J. Math. 22, 273–303 (1976)

    Article  Google Scholar 

  30. Tao, T., Visan, M.: Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron. J. Differ. Equ. 2005, 1–28 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Saanouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let us prove (2.7). Take \(u\in {\mathcal {A}}^+\) and denote for simplicity the quantities

$$\begin{aligned} E_0:=\Vert \nabla u\Vert ^2,\quad \bar{E}:=\Vert \nabla \phi \Vert ^2,\quad Q:=\int (I_\alpha *|u|^p)|u|^p\,dx. \end{aligned}$$

Then, \(E_0+M-\frac{1}{p}Q<m\) and \(Y:=2E_0-\frac{B}{p}Q>0.\) Thus,

$$\begin{aligned} E>\left( 1-\frac{2}{B}\right) E_0. \end{aligned}$$

Then,

$$\begin{aligned} M+\left( 1-\frac{2}{B}\right) E_0<M+E=S[u]<S[\phi ]=m=\frac{2(p-1)}{B}\bar{E}. \end{aligned}$$

Thus, by Young inequality

$$\begin{aligned} 2(p-1)\left( \frac{M}{A}\right) ^{\frac{A}{2(p-1)}}\left( \frac{E_0}{B}\right) ^{\frac{B-2}{2(p-1)}}<\frac{2(p-1)}{B}\bar{E}. \end{aligned}$$

This implies via Pohozaev identities that

$$\begin{aligned} E_0[u]^{s_c}M[u]^{1-s_c}<\bar{E}[\phi ]^{s_c}M[\phi ]^{1-s_c}. \end{aligned}$$

On the other hand, we have by Young inequality

$$\begin{aligned} \frac{2(p-1)}{B}\bar{E}>S[u]\ge 2(p-1)\left( \frac{M}{A}\right) ^{\frac{A}{2(p-1)}}\left( \frac{E}{B-2}\right) ^{\frac{B-2}{2(p-1)}}. \end{aligned}$$

So

$$\begin{aligned} E^{\frac{B-2}{2(p-1)}}M^{\frac{A}{2(p-1)}}<A^{\frac{A}{2(p-1)}}(B-2)^{\frac{B-2}{2(p-1)}}\frac{\bar{E}}{B}. \end{aligned}$$

This implies via Pohozaev identities that

$$\begin{aligned} E[u]^{s_c}M[u]^{1-s_c}<E[\phi ]^{s_c}M[\phi ]^{1-s_c}. \end{aligned}$$

Reciprocally, take u satisfying (2.7). Recall that the Eq. (1.1) enjoys the scaling invariance

$$\begin{aligned} u_\lambda =\lambda ^\frac{2+\alpha }{2(p-1)}u(\lambda ^{2}.,\lambda .),\quad \lambda >0. \end{aligned}$$

Compute

$$\begin{aligned} M[u_\lambda ]= & {} \lambda ^\frac{2+\alpha }{p-1}\Vert u_0(\lambda .)\Vert ^2 =\lambda ^{-N+\frac{2+\alpha }{p-1}}M[u]:=\lambda ^aM[u];\\ E[u_\lambda ]= & {} \lambda ^\frac{2+\alpha }{p-1}E[u_0(\lambda .)] =\lambda ^{2-N+\frac{2+\alpha }{p-1}}E[u]:=\lambda ^bE[u]. \end{aligned}$$

Using Young inequality, one gets

$$\begin{aligned} 2(p-1)\left( M[u_\lambda ]+E[u_\lambda ]\right) \ge \left( \frac{M[u_\lambda ]}{A}\right) ^{\frac{A}{2(p-1)}}\left( \frac{E[u_\lambda ]}{B-2}\right) ^{\frac{B-2}{2(p-1)}}. \end{aligned}$$

Moreover, the equality is equivalent to

$$\begin{aligned} \frac{M[u_\lambda ]}{A}=\frac{E[u_\lambda ]}{B-2}\Longleftrightarrow \lambda =\lambda _0=\left( \frac{(B-2)M[u]}{AE[u]}\right) ^\frac{1}{2}. \end{aligned}$$

Compute, taking \(\lambda =\lambda _0\),

$$\begin{aligned} M[u_\lambda ]+E[u_\lambda ]= & {} M[u_\lambda ](1+\frac{B-2}{A})\\= & {} \left( \frac{(B-2)M}{AE}\right) ^\frac{a}{2}M(1+\frac{B-2}{A})\\= & {} \frac{2(p-1)}{A}M^{1+\frac{a}{2}}E^{-\frac{a}{2}}\left( \frac{B-2}{A}\right) ^\frac{a}{2}\\= & {} \frac{2(p-1)}{A}\left( \frac{B-2}{A}\right) ^{-s_c}M^{1-s_c}E^{s_c}\\< & {} \frac{2(p-1)}{A}\left( \frac{B-2}{A}\right) ^{-s_c}M[\phi ]^{1-{s_c}}E[\phi ]^{s_c}. \end{aligned}$$

By Pohozaev identities, one gets

$$\begin{aligned} M[u_\lambda ]+E[u_\lambda ]< & {} \frac{2(p-1)}{A}\left( \frac{B-2}{A}\right) ^{-{s_c}}M[\phi ]^{1-{s_c}} \left( \frac{B-2}{A}M[\phi ]\right) ^{{s_c}}\\< & {} \frac{2(p-1)}{A}M[\phi ]\\< & {} S[\phi ]. \end{aligned}$$

Now, write using Proposition 2.3,

$$\begin{aligned} \frac{N}{4}{\mathcal {I}}(u)= & {} \Vert \nabla u\Vert ^{B+2-B}-\frac{B}{2p}\int (I_\alpha *|u|^p)|u|^p\,dx\\> & {} \frac{B}{2p}\left( \frac{2p}{B}\Vert \nabla u\Vert ^B\Vert \nabla \phi \Vert ^{(2-B)} \left( \frac{M[\phi ]}{M[u]}\right) ^{(2-B)\frac{1-s_c}{2s_c}}-\int (I_\alpha *|u|^p)|u|^p\,dx\right) \\> & {} \frac{B}{2p}\left( \frac{2p}{B}\Vert \nabla u\Vert ^B\Vert u\Vert ^A\Vert \nabla \phi \Vert ^{2-B}M[\phi ]^{-\frac{A}{2}}-\int (I_\alpha *|u|^p)|u|^p\,dx\right) \\> & {} \frac{B}{2p}\left( \frac{2p}{B}\Vert \nabla u\Vert ^B\Vert u\Vert ^A\left( \frac{B}{A} M[\phi ]\right) ^{\frac{2-B}{2}}M[\phi ]^{-\frac{A}{2}}-\int (I_\alpha *|u|^p)|u|^p\,dx\right) \\> & {} \frac{B}{2p}\left( C_{N,p,\alpha }\Vert \nabla u\Vert ^B\Vert u\Vert ^A-\int (I_\alpha *|u|^p)|u|^p\,dx\right) \\> & {} 0. \end{aligned}$$

This closes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T. Scattering threshold for the focusing Choquard equation. Nonlinear Differ. Equ. Appl. 26, 41 (2019). https://doi.org/10.1007/s00030-019-0587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0587-1

Mathematics Subject Classification

Keywords

Navigation