Skip to main content
Log in

On the two-power nonlinear Schrödinger equation with non-local terms in Sobolev–Lorentz spaces

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We are concerned with the two-power nonlinear Schrödinger-type equations with non-local terms. We consider the framework of Sobolev–Lorentz spaces which contain singular functions with infinite-energy. Our results include global existence, scattering and decay properties in this singular setting with fractional regularity index. Solutions can be physically realized because they have finite local \(L^2\)-mass. Moreover, we analyze the asymptotic stability of solutions and, although the equation has no scaling, show the existence of a class of solutions asymptotically self-similar w.r.t. the scaling of the single-power NLS-equation. Our results extend and complement those of Weissler (Adv Differ Equ 6(4):419–440, 2001), particularly because we are working in the larger setting of Sobolev-weak-\(L^p\) spaces and considering non-local terms. The two nonlinearities of power-type and the generality of the non-local terms allow us to cover in a unified way a large number of dispersive equations and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, P., Sparber, C.: Existence of solitary waves in dipolar quantum gases. Phys. D 240, 426–431 (2011)

    Article  MathSciNet  Google Scholar 

  2. Babaoglu, C., Eden, A., Erbay, S.: Global existence and nonexistence results for a generalized Davey–Stewartson system. J. Phys. A Math. Gen. 37, 11531–11546 (2004)

    Article  MathSciNet  Google Scholar 

  3. Babaoglu, C., Erbay, S.: Two-dimensional wave packets in an elastic solid with couple stresses. Int. J. Nonlinear Mech. 39, 941–949 (2004)

    Article  Google Scholar 

  4. Barros, V.: The Davey Stewartson system in weak \(L^p\) spaces differential integral equations. Differ. Integral Equ. 25, 883–898 (2012)

    MATH  Google Scholar 

  5. Ben-Artzi, M., Koch, H., Saut, J.-C.: Dispersion estimates for fourth order Schrödinger equations. C. R. Acad. Sci. Paris Sér. I Math. 330, 87–92 (2000)

    Article  MathSciNet  Google Scholar 

  6. Bergh, J., Lofstrom, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  Google Scholar 

  7. Barros, V., Pastor, A.: Infinite energy solutions for Schrodinger-type equations with a nonlocal term. Adv. Differ. Equ. 18(7–8), 769–796 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lectures Notes in Mathematics, vol. 10. American Mathematical Society, Providence (2003)

    Google Scholar 

  9. Cazenave, T., Weissler, F.B.: Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations. Math. Z. 228, 83–120 (1998)

    Article  MathSciNet  Google Scholar 

  10. Cazenave, T., Weissler, F.B.: Scattering theory and self-similar solutions for the nonlinear Schrödinger equation. SIAM J. Math. Anal. 31, 625–650 (2000)

    Article  MathSciNet  Google Scholar 

  11. Cazenave, T., Weissler, F.B.: More self-similar solutions of the nonlinear Schrödinger equations. NoDEA Nonlinear Differ. Equ. Appl. 5, 355–365 (1998)

    Article  Google Scholar 

  12. Cheng, X., Miao, C., Zhao, L.: Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case. J. Differ. Equ. 261, 1881–1934 (2016)

    Article  Google Scholar 

  13. Christ, F.M., Weinstein, M.I.: Dispersions of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  14. Cipolatti, R.A.: On the existence of standing waves for a Davey–Stewartson system. Commun. Partial Differ. Equ. 17, 967–988 (1992)

    Article  MathSciNet  Google Scholar 

  15. Cruz-Uribe, D., Naibo, V.: Kato–Ponce inequalities on weighted and variable Lebesgue spaces. Differ. Integral Equ. 29(9–10), 801–836 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Davey, A., Stewartson, K.: On three dimensional packets of surface waves. Proc. R. Lond. Soc. A 338, 101–110 (1974)

    Article  MathSciNet  Google Scholar 

  17. Dudley, J.M., Finot, C., Richardson, D.J., Millot, G.: Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3(9), 597–603 (2007)

    Article  Google Scholar 

  18. Ferreira, L.C.F., Villamizar-Roa, E.J.: Self-similarity and asymptotic stability for coupled nonlinear Schrödinger equations in high dimensions. Phys. D 241(5), 534–542 (2012)

    Article  MathSciNet  Google Scholar 

  19. Fermann, M.E., Kruglov, V.I., Thomsen, B.C., Dudley, J.M., Harvey, J.D.: Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010–6013 (2000)

    Article  Google Scholar 

  20. Fibich, G.: The Nonlinear Schrödinger Equations, Singular Solutions and Optical Collapse, Applied Mathematical Sciences, vol. 192. Springer, Berlin (2015)

    Book  Google Scholar 

  21. Grimshaw, R.H.J.: The modulation of an internal gravity-wave packet and the resonance with the mean motion. Stud. Appl. Math. 56, 241–266 (1977)

    Article  MathSciNet  Google Scholar 

  22. Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  23. Grafakos, L.: Modern Fourier Analysis, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  24. Ghidaglia, J.M., Saut, J.C.: On the initial problem for the Davey–Stewartson systems. Nonlinearity 3, 475–506 (1990)

    Article  MathSciNet  Google Scholar 

  25. Ghidaglia, J.M., Saut, J.C.: Nonelliptic Schrödinger equations. J. Nonlinear Sci. 3, 169–195 (1993)

    Article  MathSciNet  Google Scholar 

  26. Guo, B.L., Shen, C.X.: Almost conservations law and global rough solutions to a linear Davey–Stewartson equation. J. Math. Anal. Appl. 318, 365–379 (2006)

    Article  MathSciNet  Google Scholar 

  27. Hayashi, N.: Local existence in time of small solutions to the Davey–Stewartson system. Ann. de l’I.H.P. Phys. Theor. 65, 313–366 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Hayashi, N.: Local existence in time of solutions to the elliptic-hyperbolic Davey–Stewartson system without smallness condition on the data. J. Anal. Math. 73, 133–164 (1997)

    Article  MathSciNet  Google Scholar 

  29. Hayashi, N., Hirata, H.: Global existence and asymptotic behaviour of small solutions to the elliptic- hyperbolic Davey–Stewartson system. Nonlinearity 9, 1387–1409 (1996)

    Article  MathSciNet  Google Scholar 

  30. Hayashi, N., Hirata, H.: Local existence in time of small solutions to the elliptic-hyperbolic Davey–Stewartson system in the usual Sobolev space. Proc. Edinb. Math. Soc. 40, 563–581 (1997)

    Article  MathSciNet  Google Scholar 

  31. Hayashi, N., Saut, J.C.: Global existence of small solutions to the Davey–Stewartson and the Ishimori systems. Differ. Integral Equ. 8, 1657–1675 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Karpman, V.L.: Stabilization of soliton instabilities by high-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys. Rev. E 53, 1336–1339 (1996)

    Article  Google Scholar 

  33. Karpman, V.L., Shagalov, A.G.: Stabilitiy of soliton described by nonlinear Schrödinger-type equations with high-order dispersion. Phys. D 144, 194–210 (2000)

    Article  MathSciNet  Google Scholar 

  34. Kato, T.: On nonlinear Schrödinger equations, II, \(H^s\) solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995)

    Article  MathSciNet  Google Scholar 

  35. Kuznetsov, E.A.: Wave Collapse in Nonlinear Optics, Topics in Applied Physics, vol. 114, pp. 175–190. Springer, Berlin (2009)

    Google Scholar 

  36. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., Pfau, T.: The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009)

    Article  Google Scholar 

  37. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Universitext, Springer, New York (2009)

    MATH  Google Scholar 

  38. Miao, C., Xu, G., Zhao, L.: The dynamics of the 3D radial NLS with the combined terms. Commun. Math. Phys. 318(3), 767–808 (2013)

    Article  MathSciNet  Google Scholar 

  39. Miao, C., Xu, G., Zhao, L.: The dynamics of the NLS with the combined terms in five and higher dimensions. In: Li, J., Li, X., Lu, G. (eds.) Some Topics in Harmonic Analysis and Applications, Advanced Lectures in Mathematics, vol. 34, pp. 265–298. Higher Education Press/International Press, Beijing/USA (2015)

    Google Scholar 

  40. O‘neil, R.: Convolution operators and \(L^{p,q}\) spaces. Duke Math. J 30, 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  41. Ribaud, F., Youssfi, A.: Regular and self-similar solutions of nonlinear Schrödinger equations. J. Math Pures Appl. 77, 1065–1079 (1998)

    Article  MathSciNet  Google Scholar 

  42. Shrira, V.I.: On the propagation of a three-dimensional packet of weakly nonlinear internal gravity wave. Int. J. Nonlinear Mech. 16, 129–138 (1991)

    Article  MathSciNet  Google Scholar 

  43. Braz-Silva, P., Ferreira, L.C.F., Villamizar-Roa, E.J.: On the existence of infinite energy solutions for nonlinear Schrödinger equations. Proc. Am. Math. Soc. 137, 1977–1987 (2009)

    Article  Google Scholar 

  44. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32, 1281–1343 (2007)

    Article  Google Scholar 

  45. Triebel, H.: Interpolation Theory. Differential Operator, Function Spaces. North-Holland Publishing Company, Berlin (1978)

    MATH  Google Scholar 

  46. Villamizar-Roa, E.J., Pérez-López, J.E.: On the Davey–Stewartson system with singular initial data. C. R. Math. Acad. Sci. Paris 350, 959–964 (2012)

    Article  MathSciNet  Google Scholar 

  47. Weissler, F.B.: Asymptotically self-similar solutions of the two power nonlinear Schrödinger equation. Adv. Differ. Equ. 6(4), 419–440 (2001)

    MATH  Google Scholar 

Download references

Acknowledgements

V.B. was partially supported by FCT Project PTDC/MAT-PUR/28177/2017, with national funds, and by CMUP (UID/MAT/00144/2019), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. L.C.F.F. was partially supported by CNPq and FAPESP, Brazil. A.P. was partially supported by CNPq Grants 402849/2016-7 and 303098/2016-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir Pastor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, V., Ferreira, L.C.F. & Pastor, A. On the two-power nonlinear Schrödinger equation with non-local terms in Sobolev–Lorentz spaces. Nonlinear Differ. Equ. Appl. 26, 39 (2019). https://doi.org/10.1007/s00030-019-0584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0584-4

Keywords

Mathematics Subject Classification

Navigation