Skip to main content
Log in

Hausdorff dimensions of perturbations of a conformal iterated function system via thermodynamic formalism

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We consider small perturbations of a conformal iterated function system produced by either adding or removing some generators with small derivative from the original. We establish a formula, utilizing transfer operators arising from the thermodynamic formalism à la Sinai–Ruelle–Bowen, which may be solved to express the Hausdorff dimension of the perturbed limit set in series form: either exactly, or as an asymptotic expansion. Significant applications to the dimension theory of continued fraction Cantor sets include strengthening Hensley’s asymptotic formula from 1992, which improved on earlier bounds due to Jarník and Kurzweil, for the Hausdorff dimension of the set of real numbers whose continued fraction expansion partial quotients are all \(\le N\); as well as its counterpart for reals whose partial quotients are all \(\ge N\) due to Good from 1941.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Jarník’s result inspired a myriad extensions, e.g. [5, 28, 35, 75, 79, 85], and finding analogues of our results in any of these settings would involve tackling several new challenges.

  2. Hensley’s approach arose from a distinguished line of research on Gauss’s problem on the distribution of continued fraction partial quotients by Kuzmin, Levy, Szüsz, Wirsing, Babenko, Mayer and several others, see Knuth’s [61, pp.362–366] for a beautiful, albeit already dated, survey.

  3. The operator \(L_\infty \) is variously referred to in the literature as the transfer operator for Gauss’s continued fraction map, or as the Perron–Frobenius, Ruelle–Perron–Frobenius, Ruelle–Mayer, or Ruelle operator, etc. See e.g. [71, 89].

  4. Plugging in the formula \(\mu ' g = \mu g\) proven below, it follows that \(\mu '\) is a left fixed point of \(L'\). However, this fact is irrelevant to the proof, except as an indicator that our choice of \(\mu '\) is not as arbitrary as it may initially appear to be.

  5. See Remark 3.5.

  6. A similar result was proven in [70, Corollary 6.1.4] though the hypotheses and conclusion are somewhat different. Note that the invariance hypothesis on U in [70, Corollary 6.1.4] should be that each element of S can be extended to a univalent holomorphic map from U to itself, rather than what is written there.

  7. See Remark 3.5.

  8. It is easy to see that \(L \mathbbm {1}= \mathbbm {1}\), so the normalization (4.4) guarantees \(g = \mathbbm {1}\).

  9. Note that g is usually normalized so that \(\mu g = 1\), i.e. \(g(x) = \frac{1}{\log (2)(1 + x)}\); however, we find the normalization (4.4) more convenient.

  10. In the sequel, multiple summations are handled as follows: \(A \equiv \sum _{i = i_0}^{\rightarrow \infty } \sum _{j = j_0}^{\rightarrow \infty } a_{ij} x_i y_j\) means that for all \(p \ge i_0\), \(q\ge j_0\),

    $$\begin{aligned}A = \sum _{i = i_0}^{p - 1} \sum _{j = j_0}^{q - 1} a_{ij} x_i y_j + O_p(x_p) + O_q(y_q).\end{aligned}$$
  11. The second equality is guaranteed by Proposition 7.1(ii).

References

  1. Apostol, T.M.: An elementary view of Euler’s summation formula. Amer. Math. Monthly 106(5), 409–418 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Arnoux, P., Schmidt, T.A.: Natural extensions and Gauss measures for piecewise homographic continued fractions. Bull. Soc. Math. France 147(3), 515–544 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Banks, D.L.: A conversation with I. J. Good. Statistical Science 11(1), 1–19 (1996)

    MATH  Google Scholar 

  4. Bedford, T.: Applications of dynamical systems theory to fractals—a study of cookie-cutter Cantor sets. Fractal geometry and analysis (Montreal, PQ, 1989), pp. 1–44 (1991)

  5. Beresnevich, V.: Badly approximable points on manifolds. Invent. Math. 202(3), 1199–1240 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Beresnevich, V., Velani, S.: Number theory meets wireless communications: an introduction for dummies like us. Number theory meets wireless communications, pp. 1–67 (2020)

  7. Bernik, V. I., Dodson, M. M.: Metric Diophantine approximation on manifolds. Cambridge Tracts in Mathematics, vol. 137, Cambridge University Press, Cambridge, (1999)

  8. Berthé, V.: Multidimensional Euclidean algorithms, numeration and substitutions, Integers 11B. Paper No. A2, 34 (2011)

    MATH  Google Scholar 

  9. Berthé, V. , Lee, J.: Dynamics of Ostrowski skew-product: I. Limit laws and Hausdorff dimensions, arXiv:2108.06780, 2022 preprint

  10. Berthé, V., Nakada, H.: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties. Expo. Math. 18(4), 257–284 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Boca, F.P., Merriman, C.: Coding of geodesics on some modular surfaces and applications to odd and even continued fractions. Indag. Math. (N.S.) 29(5), 1214–1234 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Bourdon, J., Daireaux, B., Vallée, B.: Dynamical analysis of \(\alpha \)-Euclidean algorithms, pp. 246–285 (2002). Analysis of algorithms

  13. Bugeaud, Y.: Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  14. Bugeaud, Y., Dal’Bo, F., Druţu, C. (eds.): Dynamical systems and Diophantine approximation, Séminaires et Congrès [Seminars and Congresses], vol. 19, Société Mathématique de France, Paris, 2009

  15. Bumby, R.T.: Hausdorff dimensions of Cantor sets. J. Reine Angew. Math. 331, 192–206 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Bumby, R. T.: Hausdorff dimension of sets arising in number theory. Number theory (New York, 1983–84), pp. 1–8 (1985)

  17. Carminati, C., Tiozzo, G.: A canonical thickening of \({\mathbb{Q} }\) and the entropy of \(\alpha \)-continued fraction transformations. Ergodic Theory Dynam. Systems 32(4), 1249–1269 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Carminati, C., Tiozzo, G.: The bifurcation locus for numbers of bounded type. Ergodic Theory Dynam. Systems 42(7), 2239–2269 (2022)

  19. Cesaratto, E., Vallée, B.: Small quotients in Euclidean algorithms. Ramanujan J. 24(2), 183–218 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Chousionis, V., Leykekhman, D., Urbański, M.: The dimension spectrum of conformal graph directed Markov systems. Selecta Math. (N.S.) 25(3), Art. 40, 74 (2019)

  21. Chousionis, V., Leykekhman, D., Urbański, M.: On the dimension spectrum of infinite subsystems of continued fractions. Trans. Amer. Math. Soc. 373(2), 1009–1042 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Cusick, T.W.: Continuants with bounded digits. Mathematika 24(2), 166–172 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Cusick, T.W.: Continuants with bounded digits. II, Mathematika 25(1), 107–109 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Cusick, T.W.: Continuants with bounded digits. III. Monatsh. Math. 99(2), 105–109 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Cusick, T.W., Flahive, M.E.: The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, vol. 30. American Mathematical Society, Providence, RI (1989)

    MATH  Google Scholar 

  26. Dajani, K., Hensley, D., Kraaikamp, C., Masarotto, V.: Arithmetic and ergodic properties of ‘flipped’ continued fraction algorithms. Acta Arith. 153(1), 51–79 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Dajani, K., Kraaikamp, C.: Ergodic theory of numbers, Carus Mathematical Monographs, vol. 29. Mathematical Association of America, Washington, DC (2002)

    MATH  Google Scholar 

  28. Dani, S.G.: Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math. 359, 55–89 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Dani, S. G.: On badly approximable numbers, Schmidt games and bounded orbits of flows. Number theory and dynamical systems, 1989, pp. 69–86 (York, 1987)

  30. Das, T., Simmons, D., Urbański, M.: Dimension rigidity in conformal structures. Adv. Math. 308, 1127–1186 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Dodson, M.M., Kristensen, S.: Hausdorff dimension and Diophantine approximation, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, 305–347 (2004)

    MATH  Google Scholar 

  32. Falk, R.S., Nussbaum, R.D.: \(C^{m}\) eigenfunctions of Perron-Frobenius operators and a new approach to numerical computation of Hausdorff dimension: applications in \({\mathbb{R} }^{1}\). J. Fractal Geom. 5(3), 279–337 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Falk, R. S., Nussbaum, R. D.: A new approach to numerical computation of Hausdorff dimension of iterated function systems: applications to complex continued fractions. Integral Equations Operator Theory 90(5), Art. 61, 46 (2018)

  34. Fishman, L., Simmons, D., Urbański, M.: Diophantine properties of measures invariant with respect to the Gauss map. J. Anal. Math. 122, 289–315 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Fishman, L., Simmons, D., Urbański, M.: Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces. Mem. Amer. Math. Soc. 254 (1215), v+137 (2018)

  36. Flajolet, P., Vallée, B.: Continued fraction algorithms, functional operators, and structure constants. Theoret. Comput. Sci. 194(1–2), 1–34 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Flajolet, P., Vallée, B.: Continued fractions, comparison algorithms, and fine structure constants, Constructive, experimental, and nonlinear analysis (Limoges, 1999), pp. 53–82 (2000)

  38. Gardner, R.J., Mauldin, R.D.: On the Hausdorff dimension of a set of complex continued fractions. Illinois J. Math. 27(2), 334–345 (1983)

    MathSciNet  MATH  Google Scholar 

  39. González Robert, G.: Good’s theorem for Hurwitz continued fractions. Int. J. Number Theory 16(7), 1433–1447 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Good, I.J.: The fractional dimensional theory of continued fractions. Proc. Cambridge Philos. Soc. 37, 199–228 (1941)

    MathSciNet  MATH  Google Scholar 

  41. Good, I. J.: Corrigenda: “The fractional dimensional theory of continued fractions” [Proc. Cambridge Philos. Soc. 37 (1941), 199–228; MR0004878], Math. Proc. Cambridge Philos. Soc. 105 (3), 607 (1989)

  42. Hausdorff, F.: Dimension und äußeres Maß. Math. Ann. 79(1–2), 157–179 (1918)

    MathSciNet  MATH  Google Scholar 

  43. Heinemann, S.-M., Urbański, M.: Hausdorff dimension estimates for infinite conformal IFSs. Nonlinearity 15(3), 727–734 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Hensley, D.: The distribution of badly approximable numbers and continuants with bounded digits, Théorie des nombres (Quebec, PQ, 1987), pp. 371–385 (1989)

  45. Hensley, D.: The Hausdorff dimensions of some continued fraction Cantor sets. J. Number Theory 33(2), 182–198 (1989)

    MathSciNet  MATH  Google Scholar 

  46. Hensley, D.: The distribution of badly approximable rationals and continuants with bounded digits. II. J. Number Theory 34(3), 293–334 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Hensley, D.: Continued fractions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006

  48. Hensley, D.: Continued fraction Cantor sets, Hausdorff dimension, and functional analysis. J. Number Theory 40(3), 336–358 (1992). (MR1154044)

  49. Hu, X.-H., Wang, B.-W., Wu, J., Yu, Y.-L.: Cantor sets determined by partial quotients of continued fractions of Laurent series. Finite Fields Appl. 14(2), 417–437 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    MathSciNet  MATH  Google Scholar 

  51. Iosifescu, M., Kraaikamp, C.: Metrical theory of continued fractions, Mathematics and its Applications, vol. 547. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  52. Jaerisch, J., Kesseböhmer, M.: The arithmetic-geometric scaling spectrum for continued fractions. Ark. Mat. 48(2), 335–360 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Jarník, V.: Zur metrischen Theorie der diophantischen Approximationen, Prace mat. fiz. 36, 91–106 (German). (1928)

  54. Jenkinson, O., Pollicott, M.: Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets. Amer. J. Math. 124(3), 495–545 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Jenkinson, O., Pollicott, M.: Rigorous effective bounds on the Hausdorff dimension of continued fraction Cantor sets: a hundred decimal digits for the dimension of \(E_{2}\). Adv. Math. 325, 87–115 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Jenkinson, O., Pollicott, M.: Rigorous dimension estimates for Cantor sets arising in Zaremba theory, Dynamics: topology and numbers, pp. 83–107 (2020)

  57. Jurga, N.: Dimension spectrum of infinite self-affine iterated function systems. Selecta Math. (N.S.) 27(3), 23 (2021)

  58. Katok, S., Ugarcovici, I.: Symbolic dynamics for the modular surface and beyond. Bull. Amer. Math. Soc. (N.S.) 44(1), 87–132 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Khinchin, A.Y.: Continued fractions, The University of Chicago Press. Ill.-London, Chicago (1964)

    Google Scholar 

  60. Kleinbock, D., Shah, N., Starkov, A.: Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory. Handbook of dynamical systems 1A, 813–930 (2002)

    MathSciNet  MATH  Google Scholar 

  61. Knuth, D. E.: The art of computer programming. Vol. 2, Addison-Wesley, Reading, MA, (1998). Seminumerical algorithms, Third edition [of MR0286318]

  62. Kontorovich, A.V.: From Apollonius to Zaremba: local-global phenomena in thin orbits. Bull. Amer. Math. Soc. (N.S.) 50(2), 187–228 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Kraaikamp, C., Schmidt, T.A., Steiner, W.: Natural extensions and entropy of \(\alpha \)-continued fractions. Nonlinearity 25(8), 2207–2243 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Kristensen, S.: Metric Diophantine approximation—from continued fractions to fractals, Diophantine analysis, pp. 61–127 (2016)

  65. Kurzweil, J.: A contribution to the metric theory of diophantine approximations, Czechoslovak Math. J. 1(76) (1951), 149–178 (1952) = ehoslovack. Mat. Ž. 1(76) (1951), 173–203 (1952)

  66. Lagarias, J. C.: Number theory zeta functions and dynamical zeta functions. Spectral problems in geometry and arithmetic (Iowa City, IA, 1997), pp. 45–86 (1999)

  67. Lehmer, D.H.: On the maxima and minima of Bernoulli polynomials. Amer. Math. Monthly 47, 533–538 (1940)

    MathSciNet  MATH  Google Scholar 

  68. Mauldin, R. D., Urbański, M.: Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. (3) 73(1), 105–154 (1996)

  69. Mauldin, R.D., Urbański, M.: Conformal iterated function systems with applications to the geometry of continued fractions. Trans. Amer. Math. Soc. 351(12), 4995–5025 (1999)

    MathSciNet  MATH  Google Scholar 

  70. Mauldin, R. D., Urbański, M.: Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, (2003). Geometry and dynamics of limit sets

  71. Mayer, D.H.: On the thermodynamic formalism for the Gauss map. Comm. Math. Phys. 130(2), 311–333 (1990)

    MathSciNet  MATH  Google Scholar 

  72. McMullen, C. T.: The classification of conformal dynamical systems, Current developments in mathematics, 1995. (Cambridge, MA), pp. 323–360 (1994)

  73. McMullen, C. T.: Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math. 120(4), 691–721 (1998)

  74. Moreira, C. G. T. d. A.: Dynamical systems, fractal geometry and Diophantine approximations, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, pp. 731–757 (2018)

  75. Patterson, S.J.: Diophantine approximation in Fuchsian groups. Philos. Trans. Roy. Soc. London Ser. A 282(1309), 527–563 (1976)

    MathSciNet  MATH  Google Scholar 

  76. Ramharter, G.: Extremal values of continuants. Proc. Amer. Math. Soc. 89(2), 189–201 (1983)

    MathSciNet  MATH  Google Scholar 

  77. Reeve, H.W.J.: Infinite non-conformal iterated function systems. Israel J. Math. 194(1), 285–329 (2013)

    MathSciNet  MATH  Google Scholar 

  78. Rugh, H. H.: Cones and gauges in complex spaces: spectral gaps and complex Perron-Frobenius theory. Ann. of Math. (2) 171(3), 1707–1752 (2010)

  79. Schmidt, W.M.: Badly approximable systems of linear forms. J. Number Theory 1, 139–154 (1969)

    MathSciNet  MATH  Google Scholar 

  80. Schmidt, W.M.: Diophantine approximation. Lecture Notes in Mathematics, vol. 785. Springer, Berlin (1980)

  81. Schmidt, W.M.: On continued fractions and Diophantine approximation in power series fields. Acta Arith. 95(2), 139–166 (2000)

    MathSciNet  MATH  Google Scholar 

  82. Schweiger, F.: Ergodic theory of fibred systems and metric number theory. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1995)

    MATH  Google Scholar 

  83. Schweiger, F.: Multidimensional continued fractions. Oxford Science Publications, Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  84. Shallit, J.: Real numbers with bounded partial quotients: a survey, Enseign. Math. (2) 38(1–2), 151–187 (1992)

  85. Simmons, D.: A Hausdorff measure version of the Jarník-Schmidt theorem in Diophantine approximation. Math. Proc. Cambridge Philos. Soc. 164(3), 413–459 (2018)

    MathSciNet  MATH  Google Scholar 

  86. Singh, P.: The so-called Fibonacci numbers in ancient and medieval India. Historia Math. 12(3), 229–244 (1985)

    MathSciNet  MATH  Google Scholar 

  87. Sullivan, D. P.: Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981), pp. 725–752 (1983)

  88. Wang, B., Wu, J.: A survey on the dimension theory in dynamical Diophantine approximation. Recent developments in fractals and related fields, pp. 261–294 (2017)

  89. Wirsing, E.: On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith. 24, 507–528 (1973/74)

  90. Wu, J.: Hausdorff dimensions of bounded-type continued fraction sets of Laurent series. Finite Fields Appl. 13(1), 20–30 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research began on 12\(^{th}\) March 2018 when the authors met at the American Institute of Mathematics via their SQuaRE program. We thank the institute and their staff for their hospitality and excellent working conditions. In particular, we thank Estelle Basor for her continued encouragement and support. The first-named author was supported in part by a 2017–2018 Faculty Research Grant from the University of Wisconsin-La Crosse. He thanks the scientific and organizing committees of the One-world Fractals and Related Fields seminar, in particular Stéphane Seuret and Julien Barral, for the opportunity to speak about this work at his first virtual research lecture. The third-named author was supported in part by the EPSRC Programme Grant EP/J018260/1, and also in part by a Royal Society University Research Fellowship, URF\R1\180649. The fourth-named author was supported in part by a Simons Foundation Grant 581668. We thank the referee for their comments and suggestions to help improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Das.

Additional information

Dedicated to Abram Samoilovitch Besicovitch (1891–1970) and Vojtěch Jarník (1897–1970).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Computation of coefficients

Although we do not state precise formulas for the coefficients \(c_{I,j,k}\) and \(c_{I,j}\) appearing in Theorem 4.1, our proofs do facilitate the construction of such formulas. Namely, Lemmas 6.2 and 6.3 allow us to write \(\alpha \) and \(\beta \) in terms of the secondary operators \(\alpha _j\) and \(\beta _{i,j}\). Plugging these into (2.4) gives the coefficients for the power series \(\Xi \) in terms of \((\eta _i)\), \(\theta \), and \(\xi \).

To illustrate this process, we compute Hensley’s coefficients \(c_{1,0}\) and \(c_{2,1}\) for the sequence of systems \(E_N = \{1,\ldots ,N\} \rightarrow E = \mathbb {N}\), and we show that the formula for \(c_{2,0}\) in (1.3) involves Apery’s constant \(\zeta (3)\) as well as the expressions

$$\begin{aligned} \mu M_\phi&Q L M_\phi g,&\mu M_\phi&Q h,&\nu&Q L M_\phi g,&\nu&Q h, \end{aligned}$$
(A.1)

where the notation is as in §9, and \(M_\phi \) denotes multiplication by the function

$$\begin{aligned} \phi (x) = 2\log (x). \end{aligned}$$

Note that it appears to be impossible to rewrite even the simplest of these expressions, \(\nu Q h = Q\mathbbm {1}(0) = 1 + \sum _{n\ge 1} (L^n \mathbbm {1}(0) - 1/\log (2))\), in closed form. However, all of the expressions can be approximated with arbitrary accuracy.

To this end, in what follows we let \(X = N^{-1} \log (N)\). Note that since \(\theta = O(N^{-1})\), we have \(c_{I,j} \, \eta _I \theta ^j \equiv _{X^k} 0\) whenever \(\#(I) + \Sigma (I) + j \ge k\). In particular, the second-order approximation of (2.4) is

$$\begin{aligned} \mu \alpha g + \mu \beta g + \mu \Delta Q \Delta g \underset{X^3}{\equiv }\ \Xi = 0. \end{aligned}$$

Next we observe that \(\phi \circ u_b(x) = \log |u_b'(x)|\) for all bx. Thus since \(\delta = 1\), for all \(j \ge 1\) we have

$$\begin{aligned} \alpha _j f(x)= & {} \frac{1}{j!} \sum _{b \in S} |u_b'(x)| \log ^j|u_b'(x)| \; f\circ u_b(x) = \frac{1}{j!} \sum _{b\in S} |u_b'(x)| (\phi ^j f)\circ u_b(x) \\= & {} \frac{1}{j!} L M_\phi ^j f(x) \end{aligned}$$

so

$$\begin{aligned} \mu \alpha _j g&= \frac{1}{j!} \mu L M_\phi ^j g = \frac{1}{j!} \mu M_\phi ^j g\\&= \frac{2^j}{j!} \int _0^1 \frac{\log ^j(x)}{1 + x} \;\textrm{d}x = \frac{2^j}{j!} \sum _{n = 0}^\infty (-1)^n \int _0^1 x^n \log ^j(x) \;\textrm{d}x \\&= 2^j \sum _{n = 0}^\infty (-1)^n \sum _{j' = 0}^j \frac{(-1)^{j'}}{(n+1)^{j' + 1} (j - j')!} \big [x^{n+1} \log ^{j - j'}(x)\big ]_{x=0}^1 \\&= (-1)^j 2^j \sum _{n = 0}^\infty \frac{(-1)^n}{(n+1)^{j+1}} = (-1)^j 2^j (1 - 2^{-j}) \zeta (j+1)\\&= (-1)^j (2^j - 1) \zeta (j + 1) \end{aligned}$$

and thus

$$\begin{aligned} \mu \alpha g&= \sum _{j=1}^\infty \theta ^j \mu \alpha _j g \underset{X^3}{\equiv }\ \theta \mu \alpha _1 g + \theta ^2 \mu \alpha _2 g = -\zeta (2)\theta + 3 \zeta (3) \theta ^2. \end{aligned}$$

On the other hand, by direct computationFootnote 11 we have

$$\begin{aligned} \mu \beta _{0,0} g&= 1,&\mu \beta _{0,1} g&= 0,&\mu \beta _{1,0} g&= \int _0^1 -2x-1 \;\textrm{d}x = -2 \end{aligned}$$

and

$$\begin{aligned} \eta _0&\underset{X^3}{\equiv }\ -\left( \frac{N^{-(1 + 2\theta )}}{1 + 2\theta } - \frac{N^{-(2 + 2\theta )}}{2}\right) \underset{X^3}{\equiv }\ -\frac{1}{N} + \frac{2\theta \log (N)}{N} + \frac{2\theta }{N} + \frac{1}{2N^2} \underset{X^2}{\equiv }\ -\frac{1}{N},\\ \eta _1&\underset{X^3}{\equiv }\ -\frac{N^{-(2 + 2\theta )}}{2 + 2\theta } \underset{X^3}{\equiv }\ -\frac{1}{2N^2} \end{aligned}$$

so

$$\begin{aligned} \mu \beta g&\underset{X^3}{\equiv }\ \eta _0 (\mu \beta _{0,0} g + \theta \mu \beta _{0,1} g) + \eta _1 (\mu \beta _{1,0} g)\\&\underset{X^3}{\equiv }\ \left( -\frac{1}{N} + \frac{2\theta \log (N)}{N} + \frac{2\theta }{N} + \frac{1}{2N^2}\right) (1) + \left( -\frac{1}{2N^2}\right) (-2) \end{aligned}$$

Finally, since \(\beta _{0,0} = h \nu \), \(\mu h = \nu g = 1\), and \(\mu L = L\), we have

$$\begin{aligned} \mu \Delta Q \Delta g&\underset{X^3}{\equiv }\ (\theta \mu M_\phi + \eta _0 \nu ) Q (\theta L M_\phi g + \eta _0 h). \end{aligned}$$

Next we compute the first-order approximation of \(\Xi \):

$$\begin{aligned} \Xi \underset{X^2}{\equiv }\ -\zeta (2)\theta + (-1/N) \end{aligned}$$

and so setting \(\Xi = 0\) yields \(\theta \equiv _{X^2} -1/\zeta (2)N\), giving Hensley’s first coefficient

$$\begin{aligned} c_{1,0} = -1/\zeta (2) = -6/\pi ^2. \end{aligned}$$

Plugging this into the above formulas gives

$$\begin{aligned} \theta =&\frac{1}{\zeta (2)}\big (\Xi + \zeta (2)\theta \big ) \underset{X^3}{\equiv }\ \frac{1}{\zeta (2)} \left[ - \frac{1}{N} - \frac{2}{\zeta (2)} \frac{\log (N)}{N^2} + \left( \frac{3}{2} - \frac{2}{\zeta (2)} + \frac{3\zeta (3)}{\zeta ^2(2)}\right) \frac{1}{N^2}\right. \\&+ \left. \left( \frac{1}{\zeta (2)} \mu M_\phi + \nu \right) Q \left( \frac{1}{\zeta (2)} L M_\phi g + h\right) \frac{1}{N^2}\right] . \end{aligned}$$

This formula gives Hensley’s second coefficient \(c_{2,1} = -2/\zeta ^2(2) = -72/\pi ^4\): the next coefficient is

$$\begin{aligned} c_{2,0} = \frac{3}{2} - \frac{2}{\zeta (2)} + \frac{3\zeta (3)}{\zeta ^2(2)} + \left( \frac{1}{\zeta (2)} \mu M_\phi + \nu \right) Q \left( \frac{1}{\zeta (2)} L M_\phi g + h\right) \end{aligned}$$
(A.2)

Notice that the four terms of (A.1) all appear in this formula.

1.1 A.1. Some further coefficients

It turns out to be possible to compute the coefficients \(c_{i,i - 1}\) directly without dealing with any coefficients \(c_{i,j}\) such that \(j \le i - 2\). Namely, let us write \(A \equiv _p B\) if

$$\begin{aligned} B - A \equiv N^{-p} \sum _{i = 0}^{\rightarrow \infty } \sum _{j = 0}^i c_{i,j} \frac{\log ^j(N)}{N^i} \end{aligned}$$

for some coefficients \(c_{i,j}\). We can think of this as saying that \(B - A\) is “formally \(O(N^{-p})\)”, in a sense where \(N^{-1} \log (N)\) is considered “small” but \(N^{-1} \log ^2(N)\) is not considered “small”.

Now (2.4) becomes

$$\begin{aligned} \mu \alpha g + \mu \beta g \underset{2}{\equiv }\ \Xi = 0. \end{aligned}$$

Moreover, similarly to before we have \(\mu \alpha g \equiv _2 \theta \mu \alpha _1 g = -\zeta (2)\theta \). On the other hand,

$$\begin{aligned} \mu \beta g \underset{2}{\equiv }\ \eta _0 \mu \beta _{0,0} g = \eta _0 \underset{2}{\equiv }\ -N^{-1 - 2\theta } \end{aligned}$$

by the Euler-Maclaurin formula. Thus, (2.4) becomes

$$\begin{aligned} \zeta (2)\theta \underset{2}{\equiv }\ -N^{-(1 + 2\theta )} = -N^{-1} \exp (-2\theta \log (N)). \end{aligned}$$

So we have \(-\zeta (2) N\theta \equiv _2 F(2\log (N)/\zeta (2)N)\), where

$$\begin{aligned} F(x) = \sum _{j = 0}^\infty a_j x^j \;\;\;\; \text { satisfies} \;\;\;\; F(x) = \exp (x F(x)), \end{aligned}$$
(A.3)

i.e. F is the inverse of \(y\mapsto \log (y)/y\) defined in a neighborhood of 0 and sending 0 to 1. It follows that \(c_{i,i - 1} = -(2^{i-1}/\zeta ^i(2)) a_{i-1}\).

To compute \(a_j\), we first recall Cayley’s formula: the number of spanning trees on i points is \(T_i = i^{i - 2}\). To produce a recursive formula for \((T_i)\), observe that to define a spanning tree on i points, you need to define (a) a partition of the set of \(i-1\) points, (b) spanning trees on each element of the partition, and (c) a root node in each of these spanning trees to connect to the final node to form the overall tree.

Now compare the recursive formulas for \((a_j)\) and \((T_i)\):

$$\begin{aligned} a_j&= \sum _{n = 0}^\infty \frac{1}{n!} \sum _{\begin{array}{c} t\in \mathbb {N}^n \\ |t| + n = j \end{array}} \prod _{k = 1}^n a_{t_k} = \sum _{P\in \mathcal {P}_j} \prod _{A\in P} \#(A)! a_{\#(A) - 1}\\ T_i&= \sum _{P\in \mathcal {P}_{i - 1}} \prod _{A\in P} \#(A) T_{\#(A)} \end{aligned}$$

where \(\mathcal {P}_n\) is the set of all partitions of \(\{1,\ldots ,n\}\). It follows that

$$\begin{aligned} a_j = \frac{T_{j + 1}}{j!} = \frac{(j + 1)^{j - 1}}{j!} \cdot \end{aligned}$$

So

$$\begin{aligned} c_{i,i-1} = -\frac{2^{i-1}}{\zeta ^i(2)} \frac{i^{i-2}}{(i-1)!}, \end{aligned}$$

which is equivalent to (1.4) from the introduction.

Appendix B: Definition of a conformal iterated function system (CIFS)

We recall the definition of a conformal iterated function system (CIFS) due to Mauldin–Urbański.

Definition B.1

(Cf. [68, p.108–110]). Fix \(d\in \mathbb {N}\). A collection of maps \((u_a)_{a\in E}\) is called a conformal iterated function system (CIFS) on \(\mathbb {R}^d\) if:

  1. 1.

    E is a countable (finite or infinite) index set;

  2. 2.

    \(X\subseteq \mathbb {R}^d\) is a nonempty compact set which is equal to the closure of its interior;

  3. 3.

    For all \(a\in E\), \(u_a(X) \subseteq X\);

  4. 4.

    (Cone condition)

    $$\begin{aligned} \inf _{\textbf{x}\in X, r\in (0,1)} \frac{\lambda (X\cap B(\textbf{x},r))}{r^d} > 0, \end{aligned}$$

    where \(\lambda \) denotes Lebesgue measure on \(\mathbb {R}^d\);

  5. 5.

    \(V\subseteq \mathbb {R}^d\) is an open connected bounded set such that \(d(X,\mathbb {R}^d\setminus V) > 0\);

  6. 6.

    For each \(a\in E\), \(u_a\) is a conformal homeomorphism from V to an open subset of V;

  7. 7.

    (Uniform contraction) \(\sup _{a\in E} \sup |u_a'| < 1\), and if E is infinite, \(\lim _{a\in E} \sup |u_a'| = 0\);

  8. 8.

    (Bounded distortion property) For all \(n\in \mathbb {N}\), \(\omega \in E^n\), and \(\textbf{x},\textbf{y}\in V\),

    $$\begin{aligned} |u_\omega '(\textbf{x})| \asymp _\times |u_\omega '(\textbf{y})|, \end{aligned}$$
    (B.1)

    where

    $$\begin{aligned} u_\omega = u_{\omega _1}\circ \cdots \circ u_{\omega _n}. \end{aligned}$$

The CIFS is called an OSC CIFS if in addition it satisfies the open set condition (OSC), i.e. if the collection \((u_a({\text {Int}}(X)))_{a\in E}\) is disjoint.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Fishman, L., Simmons, D. et al. Hausdorff dimensions of perturbations of a conformal iterated function system via thermodynamic formalism. Sel. Math. New Ser. 29, 19 (2023). https://doi.org/10.1007/s00029-022-00820-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00820-z

Keywords

Mathematics Subject Classification

Navigation