Skip to main content
Log in

Serre duality for Khovanov–Rozansky homology

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove that the full twist is a Serre functor in the homotopy category of type A Soergel bimodules. As a consequence, we relate the top and bottom Hochschild degrees in Khovanov–Rozansky homology, categorifying a theorem of Kálmán.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilinson, A., Bezrukavnikov, R., Mirković, I.: Tilting exercises. Mosc. Math. J. 4(3), 547–557 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bondal, A., Kapranov, M.: Representable functors, Serre functors, and mutations. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 53(6), 1183–1205 (1989)

    MATH  Google Scholar 

  3. Elias, B., Hogancamp, M.: Categorical diagonalization of full twists. arXiv: 1801.00191

  4. Elias, B., Hogancamp, M.: On the computation of torus link homology. Compos. Math. 155(1), 164–205 (2019)

    Article  MathSciNet  Google Scholar 

  5. Elias, B., Khovanov, M.: Diagrammatics for Soergel categories. Int. J. Math. Math. Sci. 2010, 58 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Elias, B., Williamson, G.: Soergel calculus. Represent. Theory Am. Math. Soc. 20(12), 295–374 (2016)

    Article  MathSciNet  Google Scholar 

  7. Gorsky, E., Hogancamp, M.: Hilbert schemes and y-ification of Khovanov-Rozansky homology. arXiv: 1712.03938

  8. Gorsky, E, Neguţ, A, Rasmussen, J: Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology. arXiv: 1608.07308

  9. Gorsky, E.: q; t–Catalan numbers and knot homology. Contemp. Math. 566, 213–232 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gorsky, E., Oblomkov, A., Rasmussen, J., Shende, V.: Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)

    Article  MathSciNet  Google Scholar 

  11. Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)

    Article  MathSciNet  Google Scholar 

  12. Hogancamp, M.: Idempotents in triangulated monoidal categories (2017). arXiv: 1703.01001

  13. Hogancamp, M.: Categorified Young symmetrizers and stable homology of torus links. Geom. Topol. 22(5), 2943–3002 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hoste, J., Ocneanu, A., Millett, K., Freyd, P., Lickorish, W.B.R., Yetter, D.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. 12(2), 239–246 (1985)

    Article  MathSciNet  Google Scholar 

  15. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)

    Article  MathSciNet  Google Scholar 

  16. Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(08), 869–885 (2007)

    Article  MathSciNet  Google Scholar 

  17. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology II. Geom. Topol. 12(3), 1387–1425 (2008)

    Article  MathSciNet  Google Scholar 

  18. Krause, H.: Localization theory for triangulated categories. In: Triangulated categories. Vol. 375. London Mathematical Society Lecture Note. Cambridge University Press, Cambridge, pp. 161–235 (2010)

  19. Kálmán, T.: Meridian twisting of closed braids and the Hom y polynomial. In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 146. 3. Cambridge University Press, pp. 649–660 (2009)

  20. Libedinsky, N., Williamson, G.: Standard objects in 2-braid groups. Proc. Lond. Math. Soc. 109(5), 1264–1280 (2014)

    Article  MathSciNet  Google Scholar 

  21. Mellit, A.: Homology of torus knots. arXiv: 1704.07630

  22. Mac Lane, S.: Categories for the Working Mathematician. Second. Vol. 5. Graduate Texts in Mathematics, p. xii+314. Springer, New York (1998)

    MATH  Google Scholar 

  23. Mazorchuk, V., Stroppel, C.: Projective-injective modules, Serre functors and symmetric algebras. Journal für die reine und angewandte Mathematik (Crelles Journal) 2008(616), 131–165 (2008)

    Article  MathSciNet  Google Scholar 

  24. Nakagane, K.: The action of full twist on the superpolynomial for torus knots. In: Topology and its Applications, Vol. 266 (2019). https://doi.org/10.1016/j.topol.2019.106841

    Article  MathSciNet  Google Scholar 

  25. Oblomkov, A., Rasmussen, J., Shende, V.: The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link. Geom. Topol. 22(2), 645–691 (2018)

    Article  MathSciNet  Google Scholar 

  26. Rouquier, R.: Categorification of the braid groups. arXiv:math/0409593

  27. Rouquier, R.: Derived equivalences and finite dimensional algebras. Proc. Int. Congr. Math. 2, 191–221 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Soergel, W.: Kazhdan–Lusztig–polynome und unzerlegbare bimoduln über polynomringen. J. Inst. Math. Jussieu 6(3), 501–525 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tamás Kálmán, Andrei Neguț, Alexei Oblomkov and Jacob Rasmussen for the useful discussions. We also thank American Institute of Mathematics, where a part of this work was done, for hospitality. E. G.  was partially supported by the NSF Grants DMS-1700814, DMS-1760329, and the Russian Academic Excellence Project 5-100. M.H.  was supported by NSF Grant DMS-1702274 and also partially supported by NSF Grants DMS-1664240 and DMS-1255334. A.M.  was supported by Austrian Science Fund (FWF) projects Y963-N35 and P-31705. K.N.  was supported by JSPS KAKENHI Grant No. JP19J12350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Gorsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Semiorthogonal decompositions for coxeter groups

Appendix A: Semiorthogonal decompositions for coxeter groups

Let W be a Coxeter group with the set of reflections S. Let \({\mathfrak {h}}\) be a realization of W. Define \(R=\mathbb {k}[{\mathfrak {h}}]\), and \(B_s=R\otimes _{R^s}R\) for \(s\in S\). The category \({\mathbb {S}}\mathrm {Bim}_W\) of Soergel bimodules is the smallest full subcategory of the category of \(R-R\) bimodules containing R and all \(B_s\) and closed under direct sums, direct summands, tensor products and grading shifts. For \(W=S_n\) and \({\mathfrak {h}}=\mathbb {k}^n\) we recover the category \({\mathbb {S}}\mathrm {Bim}_n\) defined in Sect. 3.1.

Rouquier complexes can be defined in the homotopy category \({\mathcal {K}}^b({\mathbb {S}}\mathrm {Bim}_W)\) similarly to Sect. 3.4:

$$\begin{aligned} F_s=[B_s\rightarrow R],\ F_s^{-1}=[R\rightarrow B_s] \end{aligned}$$

In [26] Rouquier proved that they satisfy the relations in the braid group associated to W. Therefore for any \(w\in W\) one can consider a Rouquier complex \(F_w\) corresponding to the positive permutation braid associated to any reduced expression of w. It does not depend on the choice of a reduced expression up to homotopy equivalence.

We define triangulated subcategories \(\mathcal {U}_{<w}\) and \(\mathcal {U}_{\le w}\) of \({\mathcal {K}}^b({\mathbb {S}}\mathrm {Bim}_W)\) generated by the Rouquier complexes \(F_v\) with \(v<w\) (and \(v\le w\)) in Bruhat order.

For any \(s\in S\), there exists a chain map \(\psi _s:F_s\rightarrow F_s^{-1}\) such that

$$\begin{aligned} {\text {Cone}}[F_s\rightarrow F_s^{-1}]=[R\rightarrow R]. \end{aligned}$$
(A.1)

As an immediate corollary, we get the following:

Proposition A.1

For any \(w\in W\) there is a chain map \(\psi _w: F_w\rightarrow F_{w^{-1}}^{-1}\). The cone of \(\psi _w\) is filtered by \(F_{u^{-1}}^{-1}\) for \(u<w\) in Bruhat order.

In [20] Libedinsky and Williamson proved a much stronger statement (conjectured by Rouquier in [27], p. 215 before Remark 4.12).

Theorem A.2

[20] If \(w\ne v\) then \({\text {Hom}}(F_v,F^{-1}_{w^{-1}})=0\). If \(w=v\) then \({\text {Hom}}(F_w,F^{-1}_{w^{-1}})=R\) is generated by the map \(\psi _w\).

Corollary A.3

We have \({\text {Hom}}(F_w,R)=0\) for \(w\ne 1\).

In type A this corollary is an easy consequence of Corollary 3.22. In fact, Theorem A.2 also can be deduced:

Proposition A.4

Theorem A.2 follows from Corollary A.3.

Proof

Assume that \({\text {Hom}}(F_w,R)=0\) for \(w\ne 1\). Note that

$$\begin{aligned} {\text {Hom}}(F_v,F^{-1}_{w^{-1}}) \cong {\text {Hom}}(F_v F_{w^{-1}}, R). \end{aligned}$$

We induct on the number \(\min (l(v), l(w))\). The base case follows from the assumption. Without loss of generality, we may assume \(l(v)\le l(w)\). Let \(v=v's\) for a simple reflection s and \(l(v')=l(v)-1\). If \(l(ws)>l(w)\) then \(w\ne v\) and \(ws\ne v'\), so we have

$$\begin{aligned} {\text {Hom}}(F_v F_{w^{-1}}, R) = {\text {Hom}}(F_{v'} F_{s w^{-1}}, R) = {\text {Hom}}(F_{v'} F_{(ws)^{-1}}, R) \cong 0, \end{aligned}$$

where the last equality follows from the induction hypothesis. So we assume \(l(ws)<l(w)\). Let \(w=w' s\). The map \(\psi _s:F_s\rightarrow F_s^{-1}\) induces a map

$$\begin{aligned} {\text {Hom}}(F_{v'}, F_{{w'}^{-1}}^{-1})= & {} {\text {Hom}}(F_{v'} F_s^{-1}, F_{{w'}^{-1}}^{-1} F_s^{-1}) \rightarrow {\text {Hom}}(F_{v'} F_s, F_{{w'}^{-1}}^{-1} F_s^{-1}) \\= & {} {\text {Hom}}(F_v, F_{w^{-1}}^{-1}), \end{aligned}$$

whose cone is filtered by \({\text {Hom}}(F_{v'}, F_{w^{-1}}^{-1})\), which vanishes by the induction hypothesis since \(l(v')<l(v)\le l(w)\). So we are reduced to the statement for the pair \(v', w'\). \(\square \)

We use Theorem A.2 to deduce a very important fact about Rouquier complexes which does not appear to be explicitly stated in the literature.

Theorem A.5

We have \({\text {Hom}}(F_w,F_v)=0\) unless \(w\le v\) in Bruhat order.

Proof

By Proposition A.1 \(F_v\) is homotopy equivalent to a complex filtered by \(F_{u^{-1}}^{-1}\) with \(u\le v\). Therefore \({\text {Hom}}(F_w,F_v)=0\) unless \({\text {Hom}}(F_w,F_{u^{-1}}^{-1})\ne 0\) for some \(u\le v\). But by Theorem A.2 this is possible only if \(u=w\), and hence \(w\le v\). \(\square \)

Corollary A.6

For all w we have semiorthogonal decompositions \(\mathcal {U}_{\le w}=\langle \mathcal {U}_{<w}, F_w\rangle \) and \(\mathcal {U}_{\le w}=\langle F_{w^{-1}}^{-1}, \mathcal {U}_{<w}\rangle \).

Proof

By Proposition A.1 the category \(\mathcal {U}_{\le w}\) is generated by \(\mathcal {U}_{<w}\) and \(F_w\), or, equivalently, by \(\mathcal {U}_{<w}\) and \(F_{w^{-1}}^{-1}\) (since \({\text {Cone}}[F_w\rightarrow F_{w^{-1}}^{-1}]\in \mathcal {U}_{<w}\)). Now for all \(u<w\) we have \({\text {Hom}}(F_w,F_u)=0\) by Theorem A.5 and \({\text {Hom}}(F_{u},F_{w^{-1}}^{-1})=0\) by Theorem A.2. \(\square \)

Corollary A.7

If W is a finite Coxeter group then for all \(w\in W\) the inclusion \(\mathcal {U}_{\le w}\hookrightarrow {\mathcal {K}}^b({\mathbb {S}}\mathrm {Bim}_W)\) has both left and right adjoints.

Proof

Fix an arbitrary total order \(\prec \) on W refining the Bruhat order, let \(w_0\) be the longest element in W. Then for all w we have a chain

$$\begin{aligned} w=w^{(1)}\prec w^{(2)}\prec \cdots \prec w^{(k)}=w_0. \end{aligned}$$

Similarly to Corollary A.6, the inclusions \(\mathcal {U}_{\le w^{(i)}}\hookrightarrow \mathcal {U}_{\le w^{(i+1)}}\) have both left and right adjoints, and by combining these we get adjoints to the inclusion

$$\begin{aligned} \mathcal {U}_{\le w^{(i)}}\hookrightarrow \mathcal {U}_{\le w_0}={\mathcal {K}}^b({\mathbb {S}}\mathrm {Bim}_W). \end{aligned}$$

\(\square \)

If \(W'\) is a parabolic subgroup of W, we can consider the category of Soergel bimodules \({\mathbb {S}}\mathrm {Bim}_{W'}\) associated to the same realization \({\mathfrak {h}}\).

Corollary A.8

Let W be a finite Coxeter group and \(W'\) a parabolic subgroup. Then the inclusion \({\mathcal {K}}^b({\mathbb {S}}\mathrm {Bim}_{W'})\rightarrow {\mathcal {K}}^b({\mathbb {S}}\mathrm {Bim}_W)\) has both left and right adjoints.

Proof

We have \({\mathcal {K}}^b({\mathbb {S}}\mathrm {Bim}_{W'})=\mathcal {U}_{\le w}\) where w is the longest element of \(W'\). \(\square \)

Note that in type A this gives an alternative construction of adjoints to inclusions of \({\mathbb {S}}\mathrm {Bim}_{n,1,\ldots ,1}\) in \({\mathbb {S}}\mathrm {Bim}_{m}\). However, it seems that the direct construction of adjoints in Sect. 5 is easier to work with than the induction on Bruhat graph as in Corollary A.7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorsky, E., Hogancamp, M., Mellit, A. et al. Serre duality for Khovanov–Rozansky homology. Sel. Math. New Ser. 25, 79 (2019). https://doi.org/10.1007/s00029-019-0524-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0524-5

Mathematics Subject Classification

Navigation