Skip to main content
Log in

A primitive element theorem for fields with commuting derivations and automorphisms

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We establish a Primitive Element Theorem for fields equipped with several commuting operators such that each of the operators is either a derivation or an automorphism. More precisely, we show that for every extension \(F \subset E\) of such fields of zero characteristic such that

  • E is generated over F by finitely many elements using the field operations and the operators,

  • every element of E satisfies a nontrivial equation with coefficient in F involving the field operations and the operators,

  • the action of the operators on E is irredundant

there exists an element \(a \in E\) such that E is generated over F by a using the field operations and the operators. This result generalizes the Primitive Element Theorems by Kolchin and Cohn in two directions simultaneously: we allow any numbers of derivations and automorphisms and do not impose any restrictions on the base field F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G .E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CBO9781107325937

    Book  Google Scholar 

  2. Bélair, L.: Approximation for Frobenius algebraic equations in Witt vectors. J. Algebra 321(9), 2353–2364 (2009). https://doi.org/10.1016/j.jalgebra.2009.01.021

    Article  MathSciNet  MATH  Google Scholar 

  3. Bell, D.J., Lu, X.Y.: Differential algebraic control theory. IMA J. Math. Control Inf. 9(4), 361–383 (1992). https://doi.org/10.1093/imamci/9.4.361

    Article  MathSciNet  MATH  Google Scholar 

  4. Blossier, T., Hardouin, C., Martin-Pizarro, A.: Sur les automorphismes bornés de corps munis d’opérateurs. Math. Res. Lett. 24(4), 955–978 (2017). https://doi.org/10.4310/MRL.2017.v24.n4.a2

    Article  MathSciNet  MATH  Google Scholar 

  5. Brouette, Q., Point, F.: On differential Galois groups of strongly normal extensions. Math. Logic Q. 64(3), 155–169 (2018). https://doi.org/10.1002/malq.201600098

    Article  MathSciNet  Google Scholar 

  6. Chatzidakis, Z.: Model theory of fields with operators—a survey. In : Villaveces A, Kossak R, Kontinen J, Hirvonen Å (eds) Logic Without Borders—Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, pp. 91–114. (2015). https://doi.org/10.1515/9781614516873.91

  7. Chatzidakis, Z., Hrushovski, E.: Model theory of difference fields. Trans. Am. Math. Soc. 351, 2997–3071 (1999). https://doi.org/10.1090/S0002-9947-99-02498-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Cluzeau, T., Hubert, E.: Resolvent representation for regular differential ideals. Appl. Algebra Eng. Commun. Comput. 13(5), 395–425 (2003). https://doi.org/10.1007/s00200-002-0110-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Cluzeau, T., Hubert, E.: Probabilistic algorithms for computing resolvent representations of regular differential ideals. Appl. Algebra Eng. Commun. Comput. 19(5), 365–392 (2008). https://doi.org/10.1007/s00200-008-0079-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohn, R.M.: Difference Algebra. Interscience Publishers, Geneva (1965)

    MATH  Google Scholar 

  11. D’Alfonso, L., Jeronimo, G., Solerno, P.: Quantitative aspects of the generalized differential Lüroth’s theorem. J. Algebra 507, 547–570 (2018). https://doi.org/10.1016/j.jalgebra.2018.01.050

    Article  MathSciNet  MATH  Google Scholar 

  12. Fliess, M.: Generalized controller canonical form for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35(9), 994–1001 (1990). https://doi.org/10.1109/9.58527

    Article  MathSciNet  MATH  Google Scholar 

  13. Freitag, J., Li, W.: Simple Differential Field Extensions and Effective Bounds. Lecture Notes in Computer Science, vol. 9582, pp. 343–357. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_29

    Book  MATH  Google Scholar 

  14. Gao, X., Van der Hoeven, J., Yuan, C., Zhang, G.: Characteristic set method for differential-difference polynomial systems. J. Symb. Comput. 44(9), 1137–1163 (2009). https://doi.org/10.1016/j.jsc.2008.02.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Hardouin, C., Singer, M.F.: Differential Galois theory of linear difference equations. Math. Ann. 342(2), 333–377 (2008). https://doi.org/10.1007/s00208-008-0238-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Kamensky, M.: Tannakian formalism over fields with operators. Int. Math. Res. Notices 2013(24), 5571–5622 (2013). https://doi.org/10.1093/imrn/rns190

    Article  MathSciNet  MATH  Google Scholar 

  17. Kolchin, E.R.: Extensions of differential fileds. Ann. Math. 43(4), 724–729 (1942)

    Article  MathSciNet  Google Scholar 

  18. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  19. Kondratieva, M.V., Levin, A.B., Mikhalev, A.V., Pankratiev, E.V.: Differential and Difference Dimension Polynomials. Springer, Dordrecht (2010)

    MATH  Google Scholar 

  20. Levin, A.B. : Multivariate difference-differential dimension polynomials and new invariants of difference-differential field extensions. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC ’13, pp. 267–274, (2013). https://doi.org/10.1145/2465506.2465521

  21. Levin, A.B.: Difference Algebra. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6947-5

    Book  MATH  Google Scholar 

  22. Loos, R.: Computing in Algebraic Extensions, pp. 173–187. Springer, Vienna (1983). https://doi.org/10.1007/978-3-7091-7551-4_12

    Book  Google Scholar 

  23. Marker, D.: Chapter 2: Model Theory of Differential Fields, of Lecture Notes in Logic, vol. 5, pp. 38–113. Springer, Berlin, (1996). https://projecteuclid.org/euclid.lnl/1235423156

  24. Medina, R.F.B.: Differentially closed fields of characteristic zero with a generic automorphism. Rev. de Mat. Teor. y Apl. 14(1), 81–100 (2007). https://doi.org/10.15517/rmta.v14i1.282

    Article  MathSciNet  Google Scholar 

  25. Miller, R., Ovchinnikov, A., Trushin, D.: Computing constraint sets for differential fields. J. Algebra 407, 316–357 (2014). https://doi.org/10.1016/j.jalgebra.2014.02.032

    Article  MathSciNet  MATH  Google Scholar 

  26. Moosa, R., Scanlon, T.: Jet and prolongation spaces. J. Inst. Math. Jussieu 9(2), 391–430 (2010). https://doi.org/10.1017/S1474748010000010

    Article  MathSciNet  MATH  Google Scholar 

  27. Moosa, R., Scanlon, T.: Model theory of fields with free operators in characteristic zero. J. Math. Logic 14(2), 1450009 (2014). https://doi.org/10.1142/S0219061314500093

    Article  MathSciNet  MATH  Google Scholar 

  28. Ohyama, Y.: Differential relations of theta functions. Osaka J. Math. 32(2), 431–450 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Ostrowski, A.: Über Dirichletsche Reihen und algebraische Differentialgleichungen. Math. Z. 8(3–4), 241–298 (1920). https://doi.org/10.1007/BF01206530

    Article  MathSciNet  MATH  Google Scholar 

  30. Pogudin, G.: The primitive element theorem for differential fields with zero derivation on the base field. J. Pure Appl. Algebra 219(9), 4035–4041 (2015). https://doi.org/10.1016/j.jpaa.2015.02.004

    Article  MathSciNet  MATH  Google Scholar 

  31. Ritt, J.F.: Differential Equations from the Algebraic Standpoint. Colloquium Publications. American Mathematical Society, Providence (1932)

    Book  Google Scholar 

  32. Sánchez, O.L.: On the model companion of partial differential fields with an automorphism. Isr. J. Math. 212(1), 419–442 (2016). https://doi.org/10.1007/s11856-016-1292-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Seidenberg, A.: Abstract differential algebra and the analytic case. II. In: Proceedings of the American Mathematical Society, vol. 23, no. 3, pp. 689–691, (1969). URL https://www.jstor.org/stable/2036611

  34. Seidenberg, A.: Abstract differential algebra and the analytic case. In: Proceedings of the American Mathematical Society, vol. 9, no. 1, pp. 159–164, (1958). URL https://www.jstor.org/stable/2033416

  35. Seidenberg, A.: Some basic theorems in differential algebra (characteristic p, arbitrary). Trans. Am. Math. Soc. 73(1), 174–190 (1952)

    MathSciNet  MATH  Google Scholar 

  36. Singer, M.F.: The model theory of ordered differential fields. J. Symb. Logic 43(1), 82–91 (1978)

    Article  MathSciNet  Google Scholar 

  37. van der Waerden, B.: Algebra. Springer, New York (1991)

    Book  Google Scholar 

  38. Wood, C.: Prime model extensions for differential fields of characteristic \(p \ne 0\). J. Symb. Logic 39(3), 469–477 (1974). https://doi.org/10.2307/2272889

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Lei Fu, Alexey Ovchinnikov, Thomas Scanlon, and the referee for their suggestions and helpful discussions. This work has been partially supported by NSF Grants CCF-1564132, CCF-1563942, DMS-1853482, DMS-1853650, and DMS-1760448, by PSC-CUNY Grants #69827-0047 and #60098-0048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Pogudin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogudin, G. A primitive element theorem for fields with commuting derivations and automorphisms. Sel. Math. New Ser. 25, 57 (2019). https://doi.org/10.1007/s00029-019-0504-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0504-9

Keywords

Mathematics Subject Classification

Navigation