Skip to main content
Log in

Mirror theorems for root stacks and relative pairs

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Given a smooth projective variety X with a smooth nef divisor D and a positive integer r, we construct an I-function, an explicit slice of Givental’s Lagrangian cone, for Gromov–Witten theory of the root stack \(X_{D,r}\). As an application, we also obtain an I-function for relative Gromov–Witten theory following the relation between relative and orbifold Gromov–Witten invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Following the custom in mirror theorems, the term “I-function” refers to an explicitly constructed slice of Givental’s Lagrangian cone.

  2. We need to require the cohomology classes at orbifold marking to be in \(i^*H^*(X)\) instead of \(H^*(D)\), because we apply quantum Lefschetz.

  3. The basis \(\{\phi _\alpha \}\) is a basis of the cohomology ring pullback from the cohomological ring of \(X_{D,r}\) to \(D_r\).

References

  1. Abramovich, D., Graber, T., Vistoli, A.: Algebraic orbifold quantum products. In: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemporary Mathematics, 310, pp. 1–24, American Mathematical Society, Providence, RI (2002)

  2. Abramovich, D.: Lectures on Gromov–Witten invariants of orbifolds. In: Enumerative Invariants in Algebraic Geometry and String Theory, Lecture Notes in Mathematics, 1947, pp. 1–48, Springer, Berlin (2008)

  3. Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible covers. Commun. Algebra 31(8), 3547–3618 (2003)

    Article  MathSciNet  Google Scholar 

  4. Abramovich, D., Graber, T., Vistoli, A.: Gromov–Witten theory of Deligne–Mumford stacks. Am. J. Math. 130(5), 1337–1398 (2008)

    Article  MathSciNet  Google Scholar 

  5. Abramovich, D., Cadman, C., Wise, J.: Relative and orbifold Gromov–Witten invariants. Algebr. Geom. 4(4), 472–500 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Andreini, E., Jiang, Y., Tseng, H.-H.: Gromov–Witten theory of root gerbes I: structure of genus 0 moduli spaces. J. Differ. Geom. 99(1), 1–45 (2015)

    Article  MathSciNet  Google Scholar 

  7. Batyrev, V., Ciocan-Fontanine, I., Kim, B., van Straten, D.: Mirror symmetry and toric degenerations of partial flag manifolds. Acta Math. 184(1), 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  8. Borisov, L., Chen, L., Smith, G.: The orbifold Chow ring of toric Deligne–Mumford stacks. J. Am. Math. Soc. 18(1), 193–215 (2005)

    Article  MathSciNet  Google Scholar 

  9. Brown, J.: Gromov–Witten invariants of toric fibrations. Int. Math. Res. Not. IMRN 19, 5437–5482 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cadman, C.: Using stacks to impose tangency conditions on curves. Am. J. Math. 129(2), 405–427 (2007)

    Article  MathSciNet  Google Scholar 

  11. Chen, W., Ruan, Y.: Orbifold Gromov–Witten theory. In: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemporary Mathematics, 310, pp. 25–85, American Mathematical Society, Providence, RI (2002)

  12. Cheong, D., Ciocan-Fontanine, I., Kim, B.: Orbifold quasimap theory. Math. Ann. 363(3–4), 777–816 (2015)

    Article  MathSciNet  Google Scholar 

  13. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: Some applications of the mirror theorem for toric stacks, arXiv:1401.2611

  14. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: Computing genus-zero twisted Gromov–Witten invariants. Duke Math. J. 147(3), 377–438 (2009)

    Article  MathSciNet  Google Scholar 

  15. Coates, T., Gholampour, A., Iritani, H., Jiang, Y., Johnson, P., Manolache, C.: The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces. Math. Res. Lett. 19(5), 997–1005 (2012)

    Article  MathSciNet  Google Scholar 

  16. Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: A mirror theorem for toric stacks. Compos. Math. 151(10), 1878–1912 (2015)

    Article  MathSciNet  Google Scholar 

  17. Coates, T., Corti, A., Galkin, S., Kasprzyk, A.: Quantum periods for 3-dimensional Fano manifolds. Geom. Topol. 20(1), 103–256 (2016)

    Article  MathSciNet  Google Scholar 

  18. Fan, H., Wu, L., You, F.: Structures in genus-zero relative Gromov–Witten theory, arXiv:1810.06952

  19. Fantechi, B., Mann, E., Nironi, F.: Smooth toric Deligne–Mumford stacks. J. Reine Angew. Math. 648, 201–244 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Geraschenko, A., Satriano, M.: A “bottom up” characterization of smooth Deligne–Mumford stacks. Int. Math. Res. Not. IMRN 21, 6469–6483 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Givental, A.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progress in Mathematics, 160, pp. 141–175, Birkhäuser Boston, Boston (1998)

  22. Givental, A.: Equivariant Gromov–Witten invariants. Int. Math. Res. Not. 13, 613–663 (1996)

    Article  MathSciNet  Google Scholar 

  23. Iritani, H.: Quantum D-modules and generalized mirror transformations. Topology 47(4), 225–276 (2008)

    Article  MathSciNet  Google Scholar 

  24. Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222, 1016–1079 (2009)

    Article  MathSciNet  Google Scholar 

  25. Iritani, H.: Shift operators and toric mirror theorem. Geom. Topol. 21, 315–343 (2017)

    Article  MathSciNet  Google Scholar 

  26. Jarvis, T., Kimura, T.: Orbifold quantum cohomology of the classifying space of a finite group. In: Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemporary Mathematics, 310, pp. 123–134, American Mathematical Society, Providence, RI (2002)

  27. Jiang, Y.: The orbifold cohomology ring of simplicial toric stack bundles. Ill. J. Math. 52(2), 493–514 (2008)

    Article  MathSciNet  Google Scholar 

  28. Jiang, Y., Tseng, H.-H., You, F.: The quantum orbifold cohomology of toric stack bundles. Lett. Math. Phys. 107(3), 439–465 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kim, B., Kresch, A., Pantev, T.: Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee. J. Pure Appl. Algebra 179(1–2), 127–136 (2003)

    Article  MathSciNet  Google Scholar 

  30. Lee, Y.-P., Lin, H.-W., Wang, C.-L.: Quantum cohomology under birational maps and transitions. In: String-Math 2015, Proceedings of Symposium Pure Mathematics 96, pp. 149–168, American Mathematical Society, Providence, RI (2017)

  31. Lian, B., Liu, K., Yau, S.-T.: Mirror principle. I. Asian J. Math. 1(4), 729–763 (1997)

    Article  MathSciNet  Google Scholar 

  32. Tang, X., Tseng, H.-H.: A quantum Leray-Hirsch theorem for banded gerbes, arXiv:1602.03564

  33. Tang, X., Tseng, H.-H.: Duality theorems for étale gerbes on orbifolds. Adv. Math. 250, 496–569 (2014)

    Article  MathSciNet  Google Scholar 

  34. Tseng, H.-H., You, F.: Higher genus relative and orbifold Gromov–Witten invariants of curves. arXiv:1804.09905

  35. Tseng, H.-H., You, F.: Higher genus relative and orbifold Gromov–Witten invariants. arXiv:1806.11082

  36. Tseng, H.-H.: On the geometry of orbifold Gromov–Witten invariants, arXiv:1703.08918, to appear in the Proceedings of ICCM (2016)

  37. Tseng, H.-H.: Orbifold quantum Riemann–Roch, Lefschetz and Serre. Geom. Topol. 14(1), 1–81 (2010)

    Article  MathSciNet  Google Scholar 

  38. Tseng, H.-H., You, F.: On orbifold Gromov–Witten theory in codimension one. J. Pure Appl. Algebra 220(10), 3567–3571 (2016)

    Article  MathSciNet  Google Scholar 

  39. van Garrel, M., Graber, T., Ruddat, H.: Local Gromov–Witten invariants are log invariants. Adv. Math. 350, 860–876 (2019)

    Article  MathSciNet  Google Scholar 

  40. van Garrel, M.: Relative Mirror symmetry and ramifications of a formula for Gromov–Witten invariants, Thesis (Ph.D.)—California Institute of Technology. (2013). 72 p. ISBN: 978-1303-13350-3

  41. You, F.: A mirror theorem for toric stack bundles, thesis (Ph.D.)—The Ohio State University. (2017). 109 p. ISBN: 978-0355-44323-3

Download references

Acknowledgements

F.Y. would like to thank Qile Chen, Charles Doran and Melissa Liu for helpful discussions. H.F. is supported by Grant ERC-2012-AdG-320368-MCSK and SwissMAP. H.-H. T. is supported in part by NSF Grant DMS-1506551. F.Y. is supported by a postdoctoral fellowship funded by NSERC and Department of Mathematical Sciences at the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglong You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Tseng, HH. & You, F. Mirror theorems for root stacks and relative pairs. Sel. Math. New Ser. 25, 54 (2019). https://doi.org/10.1007/s00029-019-0501-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0501-z

Keywords

Mathematics Subject Classification

Navigation