Skip to main content
Log in

Refined decay rates of \(C_0\)-semigroups on Banach spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study rates of decay for \(C_0\)-semigroups on Banach spaces under the assumption that the norm of the resolvent of the semigroup generator grows with \(|s|^{\beta }\log (|s|)^b\), \(\beta , b \ge 0\), as \(|s|\rightarrow \infty \), and with \(|s|^{-\alpha }\log (1/|s|)^a\), \(\alpha , a \ge 0\), as \(|s|\rightarrow 0\). Our results do not suppose that the semigroup is bounded. In particular, for \(a=b=0\), our results improve the rates involving Fourier types obtained by Rozendaal and Veraar (J Funct Anal 275(10):2845–2894, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, in: Volume 96 of Monographs in Mathematics, second ed. Birkhäuser/Springer Basel AG, Basel, 2011.

  2. G. Bateman, A. Erdeyi. Tables of integral transformations. T. 1. Fourier, Laplace, Mellin transformations, M.: Nauka, 1969.

  3. A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt. Polynomial stability of operator semigroups. Math. Nachrichten. 279(13–14): 1425–1440 (2006).

    Article  MathSciNet  Google Scholar 

  4. C.J.K. Batty, M.D. Blake and S. Srivastava. A non-analytic growth bound for Laplace transforms and semigroups of operators. Integral Equ. Oper. Theory. 45:125–154 (2003).

    Article  MathSciNet  Google Scholar 

  5. C. Batty and S. Srivastava. The non-analytic growth bound of a \(C_0\)-semigroup and inhomogeneous Cauchy problems. J. Differ. Equ. 194(2):300–327 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Batty and T. Duyckaerts. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8(4):765–780 (2008).

    Article  MathSciNet  Google Scholar 

  7. C.Batty, A. Gomilko and Y. Tomilov. Product formulas in functional calculi for sectorial operators. Math. Zeitschrift. 279:479–507 (2015).

    Article  MathSciNet  Google Scholar 

  8. C. Batty, R. Chill and Y. Tomilov. Fine scales of decay of operator semigroups. J. Eur. Math. Soc. (JEMS) 18(4):853–929 (2016).

    Article  MathSciNet  Google Scholar 

  9. C. Batty, A. Gomilko and Y. Tomilov. A Besov algebra calculus for generators of operator semigroups and related norm-estimates. Math. Ann. 379(1–2):23–93 (2021).

    Article  MathSciNet  Google Scholar 

  10. C. Batty, A. Gomilko and Y. Tomilov. The theory of Besov functional calculus: developments and applications to semigroups. J. Funct. Anal. 281(6):109089 (2021).

    Article  MathSciNet  Google Scholar 

  11. C. Batty, A. Gomilko and Y.Tomilov. Functional calculi for sectorial operators and related function theory. Journal of the Institute of Mathematics of Jussieu 22(3):1383–1463 (2023).

    Article  MathSciNet  Google Scholar 

  12. A. Borichev and Y. Tomilov. Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347:455–478 (2010).

    Article  MathSciNet  Google Scholar 

  13. N. Burq. Décroissance de l’énergie locale de l’équation des ondes pour le probl‘eme extérieur et absence de résonance au voisinage du réel. Acta Math. 180:1–29 (1998).

    Article  MathSciNet  Google Scholar 

  14. R. Chill and D. Seifert. Quantified versions of Ingham’s theorem. Bull. Lond. Math. Soc. 48(3):519–532 (2016).

    Article  MathSciNet  Google Scholar 

  15. R. Chill, D. Seifert and Y. Tomilov. Semi-uniform stability of operator semigroups and energy decay of damped waves. Philos. Trans. Roy. Soc. A 378(2185):20190614 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. S. Clark. Operator Logarithms and Exponentials. PhD diss., University of Oxford, 2007. Online at: https://ora.ox.ac.uk/objects/uuid:132ebd14-420c-4c24-a38c-9838f7b7e303.

  17. G. Debruyne and D. Seifert. Optimality of the Quantified Ingham–Karamata Theorem for Operator Semigroups with General Resolvent Growth. Arch Math. 113(6):617–627 (2019).

    Article  MathSciNet  Google Scholar 

  18. K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

    Google Scholar 

  19. M. Haase. Spectral properties of operator logarithms. Math. Zeitschrift. 245(4):761–779 (2003).

    Article  MathSciNet  Google Scholar 

  20. M. Haase. The functional calculus for sectorial operators, volume 169 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2006.

  21. E. Hille and R. S. Phillips. Functional analysis and semi-groups. American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, Providence, R.I., 1957. rev. ed.

  22. Y. Latushkin and R. Shvydkoy. Hyperbolicity of semigroups and Fourier multipliers. In Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), volume 129 of Oper. Theory Adv. Appl., pp. 341–363. Birkhäuser, Basel, 2001.

  23. Y. Latushkin and V. Yurov. Stability estimates for semigroups on Banach spaces. Discrete Contin. Dyn. Syst 33(11–12): 5203–5216 (2013).

    MathSciNet  Google Scholar 

  24. Z. Liu and B. Rao. Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56(4):630–644 (2005).

    Article  MathSciNet  Google Scholar 

  25. G. Lebeau. Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud., pp. 73–109. Kluwer Acad. Publ., Dordrecht.

  26. G. Lebeau and L. Robbiano. Stabilisation de l’Équation des ondes par le bord.Duke Mathematical Journal 86(3):465–491 (1997).

  27. C. Martínez Carracedo and M. Sanz Alix. The theory of fractional powers of operators. s. 1st ed. Vol. V. Volume 187. San Diego: Elsevier Science and Technology, 2001.

  28. M. Martínez. Decay estimates of functions through singular extensions of vector-valued Laplace transforms. J. Math. Anal. Appl. 375.1: 196-206 (2011).

    Article  MathSciNet  Google Scholar 

  29. J. V. Neerven. The asymptotic behaviour of semigroups of linear operators, volume 88 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1996.

  30. V. Nollau. Überden Logarithmus abgeschlossener Operatoren in Banaschen Raümen. Acta Sci. Math. 30(3–4):161–174 (1969).

    Google Scholar 

  31. N. Okazawa. Logarithms and imaginary powers of closed linear operators. Integral Equ. Oper. Theory. 38(4):458–500 (2000).

  32. L. Paunonen. Polynomial stability of semigroups generated by operator matrices. J. Evol. Equ. 14:885–911 (2014).

    Article  MathSciNet  Google Scholar 

  33. J. Rozendaal and M. Veraar. Fourier Multiplier Theorems Involving Type and Cotype. J. Fourier Anal. Appl. 24:583–619 (2018).

    Article  MathSciNet  Google Scholar 

  34. J. Rozendaal and M. Veraar. Stability theory for semigroups using \((L^p, L^q)\) Fourier multipliers. J. Funct. Anal. 275(10):2845–2894 (2018).

    Article  MathSciNet  Google Scholar 

  35. J. Rozendaal, D. Seifert and R. Stahn. Optimal rates of decay for operator semigroups on Hilbert spaces. Adv. Math. 346:359–388 (2019).

    Article  MathSciNet  Google Scholar 

  36. J. Rozendaal. Operator-valued \((L_p, L_q)\) Fourier multipliers and stability theory for evolution equations. Indag. Math. 34(1):1–36 (2023).

    Article  MathSciNet  Google Scholar 

  37. R. Stahn. Decay of \(C_0\)-semigroups and local decay of waves on even (and odd) dimensional exterior domains. J. Evol. Equ. 18(4):1633–1674 (2018).

    Article  MathSciNet  Google Scholar 

  38. R. Schilling, R. Song, and Z. Vondracek, Bernstein functions: theory and application, de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, 2010.

    Google Scholar 

  39. Hytönen Tuomas, Veraar Mark Van Neerven Jan, and Weis Lutz. Analysis in Banach Spaces: Volume I: Martingales and Littlewood-Paley Theory. (2016).

  40. L. Weis. Stability theorems for semi-groups via multiplier theorems. In Differential equations, asymptotic analysis, and mathematical physics (Potsdam, 1996), volume 100 of Math. Res., pp. 407–411. Akademie Verlag, Berlin, 1997.

  41. L. Weis. Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4):735–758 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for suggestions that have substantially improved the exposition of the manuscript. GS thanks the partial support by CAPES (Brazilian agency). SLC thanks the partial support by Fapemig (Minas Gerais state agency; Universal Project under contract 001/17/CEX-APQ-00352-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genilson Santana.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof of Proposition 4.3

Item (a). Let \(\zeta >1\) and set \(\tilde{c}:=\zeta +a\).

\(\bullet \) Case 1: \(\alpha =1\).

Case 1(a): \(\tilde{c} \in (1,2]\). Note that in this case, \(a\in [0,1)\). Set \(h_{\alpha ,\zeta }(\lambda )=\lambda ^{\alpha }(2\pi -i\log (\lambda ))^{\zeta }\), with \(\lambda \in i{\mathbb {R}}\setminus \{0\}\), and define the operator \(L_{\nu ,\tilde{c}}(A):=(1+A)^{-\nu }(2\pi -i\log (A))^{-\tilde{c}}\in {\mathcal {L}}(X)\). Since \((\lambda +A)^{-1}\) commutes with \(L_{\nu ,\tilde{c}}(A)\), it follows from the moment inequality that

$$\begin{aligned}{} & {} \Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,\tilde{c}}(A)\Vert _{{\mathcal {L}}(X)} \lesssim \Vert h_{1,1-a}(\lambda )(\lambda +A)^{-1}L_{\nu ,1}(A)\Vert ^{2-\tilde{c}}_{{\mathcal {L}}(X)}\nonumber \\{} & {} \quad \Vert h_{1,2-a}(\lambda )(\lambda +A)^{-1}L_{\nu ,2}(A)\Vert ^{\tilde{c}-1}_{{\mathcal {L}}(X)}. \end{aligned}$$
(A.1)

Let \(\varepsilon >0\), set \(A_\varepsilon :=(A+\varepsilon )(1+\varepsilon A)^{-1}\) and note that \(A^{-1}_\varepsilon \in {\mathcal {L}}(X)\). For each \(\lambda \in i{\mathbb {R}}{\setminus }\{0\}\), let \(r\in (0,|\lambda |/2]\) and \(R\ge 2|\lambda |+2\) be such that \(\sigma (A_\varepsilon )\subset \{z\in {\mathbb {C}}\mid r<|z|<R\}\), let \(\theta \in (\pi /2,\pi )\) and set \(\gamma _{+}=\{se^{i\theta }\mid s\in [r,R]\}\), \(\gamma _{-}=\{te^{-i\theta }\mid t\in [r,R]\}\), \(\gamma _{r}=\{re^{is}\mid s\in [-\theta ,\theta ]\}\), \(\gamma _{R}=\{Re^{is}\mid s\in [-\theta ,\theta ]\}\) and \(\gamma :=\gamma _{+}\cup \gamma _{-}\cup \gamma _{r}\cup \gamma _{R}\). Then, by the Riesz–Dunford functional calculus (see (2.6)), for each \(x\in X\) (here, \(y:=(1+A)^{-\nu }x\)),

$$\begin{aligned}{} & {} h_{1,1-a}(\lambda )(\lambda +A_\varepsilon )^{-1}(2\pi -i\log (A_\varepsilon ))^{-1}y\\{} & {} \quad = \frac{h_{1,1-a}(\lambda )}{2\pi i} \int _{\gamma } \frac{1}{(2\pi -i\log (z))}R(z,A_\varepsilon ) (\lambda +A_\varepsilon )^{-1}ydz\\{} & {} \quad = \frac{h_{1,1-a}(\lambda )}{2\pi i} \int _{\gamma } \frac{1}{(2\pi -i\log (z))(\lambda +z)}dz(\lambda +A_\varepsilon )^{-1} y\\{} & {} \qquad + \frac{h_{1,1-a}(\lambda )}{2\pi i} \int _{\gamma } \frac{1}{(2\pi -i\log (z))(\lambda +z)}R(z,A_\varepsilon ) y dz\\{} & {} \quad =\frac{h_{1,1-a}(\lambda )(\lambda +A_\varepsilon )^{-1}y}{2\pi -i\log (-\lambda )} +\frac{1}{2\pi i} \int _{r}^{R}\frac{h_{1,1-a}(\lambda )e^{-i\theta }R(te^{-i\theta },A_\varepsilon )y}{(2\pi -\theta -i\log (t))(\lambda +te^{-i\theta })} dt\\{} & {} \qquad - \frac{h_{1,1-a}(\lambda )}{2\pi i} \int _{r}^{R}\frac{e^{i\theta }}{(2\pi +\theta -i\log (t))(\lambda +te^{i\theta })}R(te^{i\theta },A_\varepsilon )y dt\\{} & {} \qquad + \frac{h_{1,1-a}(\lambda )}{2\pi i} \int _{-\theta }^{\theta }\frac{iRe^{is}}{(2\pi -s+i\log (R))(\lambda +Re^{is})}R(Re^{is},A_\varepsilon )y ds\\{} & {} \qquad - \frac{h_{1,1-a}(\lambda )}{2\pi i} \int _{-\theta }^{\theta }\frac{ire^{is}}{(2\pi -s+i\log (r))(\lambda +re^{is})}R(re^{is},A_\varepsilon )yds, \end{aligned}$$

where we have used the residue theorem in the third identity. By taking the limit \(\theta \rightarrow \pi \) on both sides of the identity above, one gets

$$\begin{aligned}{} & {} h_{1,1-a}(\lambda )(\lambda +A_\varepsilon )^{-1}(2\pi -i\log (A_\varepsilon ))^{-1}y= \frac{h_{1,1-a}(\lambda )}{2\pi -i\log (-\lambda )}(\lambda +A_\varepsilon )^{-1}y\\{} & {} \quad +\frac{1}{2\pi i} \int _{r}^{R}\frac{h_{1,1-a}(\lambda )}{(\pi -i\log (t))(\lambda -t)}(t+A_\varepsilon )^{-1}y dt\\{} & {} \quad - \frac{1}{2\pi i} \int _{r}^{R}\frac{h_{1,1-a}(\lambda )(t+A_\varepsilon )^{-1}y}{(3\pi -i\log (t))(\lambda -t)} dt\\{} & {} \quad + \frac{1}{2\pi i} \int _{-\pi }^{\pi }\frac{ih_{1,1-a}(\lambda )Re^{is} R(Re^{is},A_\varepsilon )y}{(2\pi -s-i\log (R))(\lambda +Re^{is})} ds\\{} & {} \quad - \frac{h_{1,1-a}(\lambda )}{2\pi i} \int _{-\pi }^{\pi }\frac{ire^{is}}{(2\pi +s-i\log (r))(\lambda +re^{is})}R(re^{is},A_\varepsilon )y ds \end{aligned}$$

Now, by taking the limits \(r\rightarrow 0\) and \(R\rightarrow \infty \) on both sides of the last identity, one gets for each \(x\in X\),

$$\begin{aligned}{} & {} h_{1,1-a}(\lambda )(\lambda +A_\varepsilon )^{-1}(2\pi -i\log (A_\varepsilon ))^{-1}y\\{} & {} \quad = \frac{h_{1,1-a}(\lambda )(\lambda +A_\varepsilon )^{-1}y}{2\pi -i\log (-\lambda )}\\{} & {} \qquad + \int _{0}^{\infty } \frac{ih_{1,1-a}(\lambda )}{(3\pi ^2-4\pi i\log (t)-\log (t)^2)(\lambda -t)}(t+A_\varepsilon )^{-1}y\,dt. \end{aligned}$$

Finally, by taking the limit \(\varepsilon \rightarrow 0^{+}\) on both hands of the identity above, one gets

$$\begin{aligned}{} & {} h_{1,1-a}(\lambda )(\lambda +A)^{-1}(2\pi -i\log (A))^{-1}y\nonumber \\{} & {} \quad =\frac{h_{1,1-a}(\lambda )(\lambda +A)^{-1}y}{2\pi -i\log (-\lambda )}\nonumber \\{} & {} \qquad +\int _{0}^{\infty } \frac{ih_{1,1-a}(\lambda )(t+A)^{-1}y}{(3\pi ^2-4\pi i\log (t)-\log (t)^2)(\lambda -t)}dt, \end{aligned}$$
(A.2)

where we have used on the left-hand side that \((\lambda +A_\varepsilon )^{-1}\rightarrow (\lambda +A)^{-1}\) uniformly (by Lemma 2.10), \((2\pi -i\log (A_\varepsilon ))^{-1}\rightarrow (2\pi -i\log (A))^{-1}\) strongly (see the proof of Lemma 3.5.1 [20]), and on the right-hand side dominated convergence.

Then, by (A.2), one gets

$$\begin{aligned}{} & {} |h_{1,1-a}(\lambda )|\left\| (\lambda +A)^{-1}(2\pi -i\log (A))^{-1}(1+A)^{-\nu }\right\| _{{\mathcal {L}}(X)}\nonumber \\{} & {} \quad \lesssim \left\| \frac{h_{1,1-a}(\lambda )(\lambda +A)^{-1}}{2\pi -i\log (-\lambda )}\right\| _{{\mathcal {L}}(X)}+ \int _{0}^{\infty } \frac{|h_{1,1-a}(\lambda )| }{(\pi ^2+\log (t)^{2})|\lambda -t|}\Vert (t+A)^{-1}\Vert _{{\mathcal {L}}(X)} dt\nonumber \\{} & {} \quad \lesssim \left\| \frac{h_{1,1-a}(\lambda )(\lambda +A)^{-1}}{2\pi -i\log (-\lambda )}\right\| _{{\mathcal {L}}(X)}+\int _{0}^{\infty } \frac{|h_{1,1-a}(\lambda )| }{t(\pi ^2+\log (t)^{2})|(\lambda |+t)} dt\nonumber \\{} & {} \quad \lesssim \left\| \frac{h_{1,1-a}(\lambda )(\lambda +A)^{-1}}{2\pi -i\log (-\lambda )}\right\| _{{\mathcal {L}}(X)} +\int _{0}^{\infty }\frac{|h_{1,1-a}(\lambda )|(t+1)}{t(\pi ^2+\log (t)^2)(|\lambda |+t)}dt\nonumber \\{} & {} \quad =\left\| \frac{h_{1,1-a}(\lambda )(\lambda +A)^{-1}}{2\pi -i\log (-\lambda )}\right\| _{{\mathcal {L}}(X)}+ \frac{|h_{1,1-a}(\lambda )|(|\lambda |-1)}{|\lambda |\log (|\lambda |)}, \end{aligned}$$
(A.3)

where we have used relation (2.3) in the last identity.

Note that for each \(\lambda \in i{\mathbb {R}}\setminus \{0\}\) with \(|\lambda |\le 1\), it follows from (4.5) that

$$\begin{aligned} \left\| \frac{h_{1,1-a}(\lambda )(\lambda +A)^{-1}}{2\pi -i\log (-\lambda )}\right\| _{{\mathcal {L}}(X)}\lesssim 1, \end{aligned}$$

and since for each \(\eta >0\), \(\displaystyle {\lim _{|\lambda |\rightarrow 0^{+}} |\lambda |\log (|\lambda |)^{\eta }=0}\), one gets

$$\begin{aligned} \frac{|h_{1,1-a}(\lambda )|(|\lambda |-1)}{|\lambda |\log (|\lambda |)}\le \frac{(2\pi +|\log (|\lambda |)|)^{1-a}(|\lambda |-1)}{\log (|\lambda |)} \lesssim |\lambda ||\log (|\lambda |)|^{-a} {\mathop {\longrightarrow }\limits ^{|\lambda |\rightarrow 0^+}} 0 \end{aligned}$$

and \(|h_{1,1-a}(\lambda )|\rightarrow 0\) as \(|\lambda |\rightarrow 0^{+}\). Hence, one concludes that

$$\begin{aligned}{} & {} \sup \left\{ \left\| h_{1,1-a}(\lambda )(\lambda +A)^{-1}(1+A)^{-\nu }(2\pi -i\log (A))^{-1}\right\| _{{\mathcal {L}}(X)} \mid \lambda \in i{\mathbb {R}}\setminus \{0\}, |\lambda |\le 1\right\} \nonumber \\{} & {} \quad <\infty . \end{aligned}$$
(A.4)

Now, by using the same ideas as before, one has for each \(\varepsilon >0\) and each \(x\in X\),

$$\begin{aligned}{} & {} h_{1,2-a}(\lambda )(\lambda +A_\varepsilon )^{-1}(2\pi -i\log (A_\varepsilon ))^{-2}(1+A)^{-\nu }x\\{} & {} \quad = \frac{h_{1,2-a}(\lambda )(\lambda +A_\varepsilon )^{-1}(1+A)^{-\nu }x}{(2\pi -i\log (\lambda ))^2}\\{} & {} \qquad -\int _{0}^{\infty } \frac{2ih_{1,2-a}(\lambda )(2\pi -i\log (t))(t+A_\varepsilon )^{-1}(1+A)^{-\nu }x}{(3\pi ^2-4\pi i\log (t)-\log (t)^2)^2(\lambda -t)} dt. \end{aligned}$$

So, by taking the limit \(\varepsilon \rightarrow 0^+\) on both sides of the identity, one gets

$$\begin{aligned}{} & {} h_{1,2-a}(\lambda )(\lambda +A)^{-1}(2\pi -i\log (A))^{-2}(1+A)^{-\nu }x = \frac{h_{1,2-a}(\lambda )(\lambda +A)^{-1}(1+A)^{-\nu }x}{(2\pi -i\log (\lambda ))^2}\\{} & {} \quad -\int _{0}^{\infty } \frac{2ih_{1,2-a}(\lambda )(2\pi -i\log (t))(t+A)^{-1}(1+A)^{-\nu }x}{(3\pi ^2-4\pi i\log (t)-\log (t)^2)^2(\lambda -t)} dt. \end{aligned}$$

Then,

$$\begin{aligned}{} & {} \left\| h_{1,2-a}(\lambda )(\lambda +A)^{-1}(2\pi -i\log (A))^{-2}\right\| _{{\mathcal {L}}(X)}\lesssim \left\| \frac{h_{1,2-a}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (\lambda ))^2}\right\| _{{\mathcal {L}}(X)}\\{} & {} \qquad + \int _{0}^{e^{-2\pi }} \frac{|h_{1,2-a}(\lambda )||\log (t)|}{t(\pi ^{2}+\log (t)^2)^2(|\lambda |+t)}dt+\int _{e^{-2\pi }}^{e^{2\pi }} \frac{|h_{1,2-a}(\lambda )|(|\log (t)|+2\pi )}{|(3\pi ^2-4\pi i\log (t)-\log (t)^2)^2|}\frac{dt}{t}\\{} & {} \qquad +\int _{e^{2\pi }}^{\infty } \frac{|h_{1,2-a}(\lambda )| |\log (t)|}{t(\pi ^{2}+\log (t)^2)^2(|\lambda |+t)}dt \lesssim \left\| \frac{h_{1,2-a}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (\lambda ))^2}\right\| _{{\mathcal {L}}(X)}\\{} & {} \qquad +|h_{1,2-a}(\lambda ) |\int _{0}^{\infty } \frac{\pi ^2-2(1+1/t)\log (t)+\log (t)^2}{(\pi ^2+(\log (t))^{2})^2(|\lambda |+t)} dt +|h_{1,2-a}(\lambda )|\\{} & {} \quad = \left\| \frac{h_{1,2-a}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (\lambda ))^2}\right\| _{{\mathcal {L}}(X)}+ \frac{|h_{1,2-a}(\lambda )|(|\lambda |\log (|\lambda |)-|\lambda |+1 +|\lambda |\log (|\lambda |)^2)}{|\lambda |\log (|\lambda |)^2}, \end{aligned}$$

where we have used relation (2.4) in the last identity.

By using the same reasoning as before, one concludes that

$$\begin{aligned}{} & {} \sup \left\{ \left\| h_{1,2-a}(\lambda )(\lambda +A)^{-1}(2\pi -i\log (A))^{-2}(1+A)^{-\nu }\right\| _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}\setminus \{0\}, |\lambda |\le 1\right\} \nonumber \\{} & {} \quad <\infty . \end{aligned}$$
(A.5)

Finally, by combining (A.1), (A.4) and (A.5), it follows that

$$\begin{aligned} \sup \{\Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,\tilde{c}}(A)\Vert _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}\setminus \{0\}, |\lambda |\le 1\}<\infty . \end{aligned}$$

Case 1(b): \(\tilde{c}\in (2,3]\). In this case, \(a\in [1,2)\); then, by the moment inequality, one gets for each \(\lambda \in i{\mathbb {R}}{\setminus }\{0\}\),

$$\begin{aligned} \Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,\tilde{c}}(A)\Vert _{{\mathcal {L}}(X)}\lesssim & {} \Vert h_{1,2-a}(\lambda )(\lambda +A)^{-1}L_{\nu ,2}(A)\Vert ^{2-\tilde{c}}_{{\mathcal {L}}(X)}\\{} & {} \Vert h_{1,3-a}(\lambda )(\lambda +A)^{-1}L_{\nu ,3}(A)\Vert ^{\tilde{c}-1}_{{\mathcal {L}}(X)}, \end{aligned}$$

and it remains to estimate \(\Vert h_{1,3-a}(\lambda )(\lambda +A)^{-1}L_{\nu ,3}(A)\Vert ^{\tilde{c}-1}_{{\mathcal {L}}(X)}\). Note that for each \(\lambda \in i{\mathbb {R}}\setminus \{0\}\), \(\varepsilon >0\) and each \(x\in X\), one has (here, \(y=(1+A)^{-\nu }x\))

$$\begin{aligned}{} & {} h_{1,3-a}(\lambda )(\lambda +A_\varepsilon )^{-1}(2\pi -i\log (A_\varepsilon ))^{-3}y = \frac{h_{1,3-a}(\lambda )(\lambda +A_\varepsilon )^{-1}y}{(2\pi -i\log (-\lambda ))^{3}}\\{} & {} \quad + ih_{1,3-a}(\lambda )\int _{0}^{\infty } \frac{(26\pi ^3-24\pi ^2 i \log (t)+6\pi \log (t))(t+A_\varepsilon )^{-1}y}{(3\pi ^2-4\pi i\log (t)-\log (t)^2)^{3}(\lambda -t)} dt, \end{aligned}$$

and then, by taking the limit \(\varepsilon \rightarrow 0^+\) on both sides of the last identity, one gets

$$\begin{aligned}{} & {} h_{1,3-a}(\lambda )(\lambda +A)^{-1}L_{\nu ,3}(A)x=\frac{h_{1,3-a}(\lambda )(\lambda +A)^{-1}y}{(2\pi -i\log (-\lambda ))^{3}}+ \\{} & {} \quad + \int _{0}^{\infty } \frac{ih_{1,3-a}(\lambda )(26\pi ^3-24\pi ^2 i \log (t)+6\pi \log (t)}{(3\pi ^2-4\pi i\log (t)-\log (t)^2)(\lambda -t)}(t+A)^{-1}y\,dt. \end{aligned}$$

Thus, by relation (2.5),

$$\begin{aligned}{} & {} \left\| h_{1,3-a}(\lambda )(\lambda +A)^{-1}L_{\nu ,3}(A)\right\| _{{\mathcal {L}}(X)} \lesssim \left\| \frac{h_{1,3-a}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (-\lambda ))^{3}}\right\| _{{\mathcal {L}}(X)}\\{} & {} \qquad +\int _{0}^{e^{-\sqrt{3}\pi }} \frac{|h_{1,3-a}(\lambda )| (26\pi ^3+24\pi ^2|\log (t)| +6\pi \log (t)^2)\Vert (t+A)^{-1}\Vert _{{\mathcal {L}}(X)}}{(\pi ^2+\log (t)^{2})^3|\lambda -t|} dt\\{} & {} \qquad + \int _{e^{-\sqrt{3}\pi }}^{e^{\sqrt{3}\pi }} \frac{|h_{1,3-a}(\lambda )|}{|3\pi ^2-4\pi i\log (t)-\log (t)^2|||\lambda -t|}\Vert (t+A)^{-1}\Vert _{{\mathcal {L}}(X)} dt\\{} & {} \qquad +|h_{1,3-a}(\lambda )|\int _{e^{\sqrt{3}\pi }}^{\infty } \frac{26\pi ^3+24\pi ^2|\log (t)|+6\pi \log (t)^2}{(\pi ^2+\log (t)^{2})^{3}|\lambda -t|}\Vert (t+A)^{-1}\Vert _{{\mathcal {L}}(X)} dt\\{} & {} \quad \lesssim \left\| \frac{h_{1,3-a}(\lambda )}{(2\pi -i\log (-\lambda ))^{3}}(\lambda +A)^{-1}\right\| _{{\mathcal {L}}(X)}+ \int _{0}^{\infty } \frac{|h_{1,3-a}(\lambda )|f(t)}{t(\pi ^2+\log (t)^{2})^{3}(|\lambda |+t)} dt\\{} & {} \qquad + \int _{e^{-\sqrt{3}\pi }}^{e^{\sqrt{3}\pi }} \frac{|h_{1,3-a}(\lambda )|}{t^2|3\pi ^2-4\pi i\log (t)-\log (t)^2|}dt\\{} & {} \qquad \frac{|h_{1,3-c}(\lambda )|f(t)}{t(\pi ^2+\log (t)^{2})(|\lambda |+t)} dt \lesssim \left\| \frac{h_{1,3-a}(\lambda )}{(2\pi -i\log (-\lambda ))^3} (\lambda +A)^{-1}\right\| _{{\mathcal {L}}(X)}\\{} & {} \qquad +|h_{1,3-a}(\lambda )| \frac{(|\lambda |\log (|\lambda |)^2-2(|\lambda |\log (|\lambda |)-|\lambda |+1)}{|\lambda |\log (|\lambda |)^3}\\{} & {} \qquad + |h_{1,3-a}(\lambda )|, \end{aligned}$$

where for each \(t>0\),

$$\begin{aligned} f(t)= & {} \pi ^2((-2+\pi ^2)t-2)+t\log (t)^4-4t\log (t)^3\\{} & {} +2((3+\pi ^2)t+3)\log (t)^2-4\pi ^2t\log (t). \end{aligned}$$

By proceeding as in Case 1(a), one concludes that

$$\begin{aligned} \sup \{\Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,\tilde{c}}(A)\Vert _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}\setminus \{0\}, |\lambda |\le 1\}<\infty . \end{aligned}$$

Case 1(c): \(\tilde{c}>3\). In this case, \(a\ge 2\). Let \(\zeta =\zeta _1+\zeta _2\), with \(\zeta _2\in (1,2)\). Again, by applying the moment inequality over \(\zeta _2\), one gets

$$\begin{aligned}{} & {} \Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,a+\zeta _1+\zeta _2}(A)\Vert _{{\mathcal {L}}(X)} \lesssim \Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,a+\zeta _2}(A)\Vert _{{\mathcal {L}}(X)}\\{} & {} \quad \lesssim \Vert h_{1,1}(\lambda )(\lambda +A)^{-1}L_{\nu ,1+a}(A)\Vert ^{2-\zeta _2}_{{\mathcal {L}}(X)} \Vert h_{1,2}(\lambda )(\lambda +A)^{-1}L_{\nu ,2+a}(A)\Vert ^{\zeta _2-1}_{{\mathcal {L}}(X)}. \end{aligned}$$

Let \(\gamma \) be the same path as presented in Case 1(a). Then, for each \(\varepsilon >0\) and each \(x\in X\),

$$\begin{aligned}{} & {} h_{1,1}(\lambda )(\lambda +A_\varepsilon )^{-1}(2\pi -i\log (A_\varepsilon ))^{-(1+a)}x\\{} & {} \quad = \frac{h_{1,1}(\lambda )}{2\pi i} \int _{\gamma } \frac{1}{(2\pi -i\log (z))^{1+a}}R(z,A_\varepsilon ) (\lambda +A_\varepsilon )^{-1} x dz\\{} & {} \quad {\mathop {\longrightarrow }\limits ^{\theta \rightarrow \pi }} \frac{h_{1,1}(\lambda ) (\lambda +A_\varepsilon )^{-1}x}{(2\pi -i\log (-\lambda ))^{1+a}}+\frac{1}{2\pi i} \int _{r}^{R}\frac{h_{1,1}(\lambda )(t+A_\varepsilon )^{-1}}{(2\pi -i\log (t))^{1+a}(\lambda -t)} x dt\\{} & {} \quad - \frac{1}{2\pi i} \int _{r}^{R}\frac{h_{1,1}(\lambda )}{(3\pi -i\log (t))^{1+a}(\lambda -t)} (t+A_\varepsilon )^{-1} x dt\\{} & {} \quad + \frac{1}{2\pi i} \int _{-\pi }^{\pi }\frac{ih_{1,1}(\lambda )Re^{is}}{(2\pi -s-i\log (R))^{1+a}(\lambda +Re^{is})}R(Re^{is},A_\varepsilon )x ds\\{} & {} \quad - \frac{h_{1,1}(\lambda )}{2\pi i} \int _{-\pi }^{\pi }\frac{ire^{is}}{(2\pi +s-i\log (r))^{1+a}(\lambda +re^{is})}R(re^{is},A_\varepsilon ) x ds\\{} & {} \quad {\mathop {\longrightarrow }\limits ^{r\rightarrow 0,R\rightarrow \infty }}\frac{h_{1,1}(\lambda )}{(2\pi -i\log (-\lambda ))^{1+a}}(\lambda +A_\varepsilon )^{-1}x+\\{} & {} \quad \frac{1}{2\pi i} \int _{0}^{\infty }\frac{h_{1,1}(\lambda )(t+A_\varepsilon )^{-1}}{(\pi -i\log (t))^{1+a}(\lambda -t)}xdt\\{} & {} \quad - \frac{1}{2\pi i} \int _{0}^{\infty }\frac{h_{1,1}(\lambda )(t+A_\varepsilon )^{-1}}{(3\pi -i\log (t))^{1+a}(\lambda -t)}x dt. \end{aligned}$$

Now, it follows from dominated convergence that for each \(x\in X\),

$$\begin{aligned}{} & {} h_{1,1}(\lambda )(\lambda +A)^{-1}(2\pi -i\log (A))^{-(1+a)}x = \frac{h_{1,1}(\lambda )(\lambda +A)^{-1}x}{(2\pi -i\log (-\lambda ))^{1+a}}\\{} & {} \quad + \frac{1}{2\pi i} \int _{0}^{\infty }\frac{h_{1,1}(\lambda )}{(\pi -i\log (t))^{1+a}(\lambda -t)}(t+A)^{-1} xdt\\{} & {} \quad - \frac{1}{2\pi i} \int _{0}^{\infty }\frac{h_{1,1}(\lambda )(t+A)^{-1}}{(3\pi -i\log (t))^{1+a}(\lambda -t)}x dt. \end{aligned}$$

Therefore,

$$\begin{aligned}{} & {} \Vert h_{1,1}(\lambda )(\lambda +A)^{-1}(2\pi -i\log (A))^{-(1+a)}\Vert _{{\mathcal {L}}(X)}\le \left\| \frac{h_{1,1}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (-\lambda ))^{1+a}}\right\| _{{\mathcal {L}}(X)}\\{} & {} \qquad + \frac{1}{2\pi } \int _{0}^{\infty }\frac{|h_{1,1}(\lambda )|\Vert (t+A)^{-1}\Vert _{{\mathcal {L}}(X)}}{(\pi ^2+\log (t)^2)(|\lambda |+t)} dt+ \frac{1}{2\pi } \int _{0}^{\infty }\frac{|h_{1,1}(\lambda )|\Vert (t+A)^{-1}\Vert _{{\mathcal {L}}(X)}}{(\pi ^2+\log (t)^2)(|\lambda |+t)} dt\\{} & {} \quad = \left\| \frac{h_{1,1}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (-\lambda ))^{1+a}}\right\| _{{\mathcal {L}}(X)}+2\frac{|h_{1,1}(\lambda )|(|\lambda |-1)}{|\lambda |\log (|\lambda |)}. \end{aligned}$$

Now, by the same reasoning as before, one gets

$$\begin{aligned}{} & {} h_{1,2}(\lambda )(\lambda +A)^{-1}(2\pi -i\log (A))^{-(2+a)} = \frac{h_{1,2}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (-\lambda ))^{2+a}}\\{} & {} \quad + \frac{1}{2\pi i} \int _{0}^{\infty }\frac{h_{1,2}(\lambda )}{(\pi -i\log (t))^{2+a}(\lambda -t)}(t+A)^{-1} dt\\{} & {} \quad - \frac{1}{2\pi i} \int _{0}^{\infty }\frac{h_{1,2}(\lambda )(t+A)^{-1}}{(3\pi -i\log (t))^{2+a}(\lambda -t)} dt, \end{aligned}$$

so

$$\begin{aligned}{} & {} \Vert h_{1,2}(\lambda )(\lambda +A)^{-1}L_{\nu ,2+a}(A)\Vert _{{\mathcal {L}}(X)}\\{} & {} \quad \lesssim \left\| \frac{h_{1,2}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (-\lambda ))^{2+a}}\right\| _{{\mathcal {L}}(X)}+ \\{} & {} \qquad + \frac{|h_{1,2}(\lambda )|}{\pi } \int _{0}^{\infty }\frac{(\pi ^2-2(1+1/t)\log (t)+\log (t)^2)}{(\pi ^2+\log (t)^2)^2(|\lambda |+t)}dt\\{} & {} \quad =\left\| \frac{h_{1,2}(\lambda )(\lambda +A)^{-1}}{(2\pi -i\log (-\lambda ))^{2+a}} \right\| _{{\mathcal {L}}(X)}\\{} & {} \qquad +\frac{|h_{1,2}(\lambda )|(|\lambda |\log (|\lambda |)-|\lambda |+1)}{\pi |\lambda |\log (|\lambda |)^2}. \end{aligned}$$

Again, by proceeding as in Case 1(a), one concludes that

$$\begin{aligned} \sup \{\Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,a+\zeta _1+\zeta _2}(A)\Vert _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}\setminus \{0\}, |\lambda |\le 1\}<\infty . \end{aligned}$$

\(\bullet \) Case 2: \(\alpha \ge 2\). By using the functional calculus for \(H_0^\infty \) functions (see Remark 2.13), one gets for each \(x\in X\),

$$\begin{aligned}{} & {} h_{1,\zeta }(\lambda )(\lambda +A)^{-1}A^{\alpha -1}(1+A)^{-(\alpha -1)}(2\pi -i\log (A))^{-\tilde{c}} x\\{} & {} \quad = \frac{h_{1,\zeta }(\lambda )}{2\pi i}\int _{\Gamma } \frac{z^{\alpha -1}(\lambda +A)^{-1}}{(1+z)^{\alpha -1}h_{0,\tilde{c}}(z)}R(z,A)xdz\\{} & {} \quad = \frac{h_{1,\zeta }(\lambda )(-\lambda )^{\alpha -1}}{(1-\lambda )^{\alpha -1}(2\pi -i\log (-\lambda ))^{\tilde{c}}}(\lambda +A)^{-1}x\\{} & {} \qquad + h_{1,\zeta }(\lambda )S^{''}_{\lambda }x, \end{aligned}$$

where

$$\begin{aligned} S^{''}_{\lambda }:=\frac{1}{2\pi i}\int _{\Gamma }\frac{z^{\alpha -1}}{(1+z)^{\alpha -1}h_{0,\tilde{c}}(z)(z+\lambda )}R(z,A)dz. \end{aligned}$$

The function \(z\mapsto (2\pi -i\log (z))^{-\tilde{c}}R(z,A)\) is integrable on \(\Gamma \) and by Lemma 5.9 in [34], for \(z\in \Gamma \) and \(|\lambda |\le 1\), one has

$$\begin{aligned} \left| \frac{z^{\alpha -1} h_{1,\zeta }(\lambda )}{(1+z)^{\alpha -1}(z+\lambda )}\right| \le \frac{C}{|1-\lambda |}\le C; \end{aligned}$$

hence, \(\sup \{\Vert h_{1,\zeta }(\lambda )S^{''}_{\lambda } \Vert _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}{\setminus }\{0\}, |\lambda |\le 1\}<\infty \), and since \(\left\| \dfrac{h_{1,\zeta }(\lambda )(-\lambda )^{\alpha -1}(\lambda +A)^{-1}}{(1-\lambda )^ {\alpha -1}(2\pi -i\log (-\lambda ))^{\tilde{c}}}\right\| _{{\mathcal {L}}(X)}\) is also bounded (by hypothesis), then

$$\begin{aligned} \sup \{\Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}A^{\alpha -1}(1+A)^{-(\alpha -1)} (2\pi -i\log (A))^{-\tilde{c}}\Vert _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}\setminus \{0\}, |\lambda |\le 1\}<\infty . \end{aligned}$$

\(\bullet \) Case 3: \(\alpha \in (1,2)\). By the moment inequality (applied over \(\alpha -1\in (0,1)\)), one gets

$$\begin{aligned}{} & {} \Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}(A(1+A)^{-1})^{\alpha -1}L_{\nu ,\tilde{c}}(A)\Vert _{{\mathcal {L}}(X)}\\{} & {} \quad \lesssim \Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}L_{\nu ,\tilde{c}}(A)\Vert ^{2-\alpha }_{{\mathcal {L}}(X)} \Vert h_{1,\zeta }(\lambda )(\lambda +A)^{-1}A(1+A)^{-1}L_{\nu ,\tilde{c}}(A)\Vert ^{\alpha -1}_{{\mathcal {L}}(X)}. \end{aligned}$$

The first factor is treated as in Case 1, and the second factor is treated as in Case 2.

Item (b)

\(\bullet \) Case 1: \(\alpha =1.\) Let \(\zeta >1\) and set \(\tilde{c}:=\zeta +a>1\).

Given that the operator \((\log (2+A))^{\tilde{c}}(2\pi -i\log (A))^{-\tilde{c}}\) is closed, it follows from the Closed Graph Theorem that it is bounded; hence,

$$\begin{aligned} \Vert (\lambda +A)^{-1}(1+A)^{-1}(2\pi -i\log (A))^{-\tilde{c}}\Vert _{{\mathcal {L}}(X)}\lesssim \Vert (\lambda +A)^{-1}(1+A)^{-1}\log (A+2)^{-\tilde{c}}\Vert _{{\mathcal {L}}(X)}. \end{aligned}$$

Now, by Proposition 3.3, one gets

$$\begin{aligned}{} & {} \sup \left\{ \frac{|\lambda |}{(1+|\lambda |)^{1-\beta _0}} |(2\pi -\log (\lambda ))|^{\zeta }\Vert (\lambda +A)^{-1}(1+A)^{-1}\right. \\{} & {} \quad \left. \log (A+2)^{-\tilde{c}}\Vert _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}, |\lambda |\ge 1\right\} <\infty . \end{aligned}$$

\(\bullet \) Case 2: \(\alpha \ge 2\). Let \(g_{\alpha ,\zeta }(\lambda )=\dfrac{\lambda ^{\alpha }}{(1-\lambda )^{1-\beta _0}}(2\pi -i\log (\lambda ))^\zeta \), with \(\lambda \in i{\mathbb {R}}\setminus \{0\}\); then, by the functional calculus for \(H_0^\infty \) functions (see Remark 2.13), for each \(x\in X\), one has

$$\begin{aligned}{} & {} g_{1,\zeta }(\lambda )(\lambda +A)^{-1}A^{\alpha -1}(1+A)^{-(\alpha +\beta +\beta _0-1)}(2\pi -i\log (A))^{-\tilde{c}}x\\{} & {} \quad =\frac{g_{1,\zeta }(\lambda )}{2\pi i}\int _{\Gamma }\frac{z^{\alpha -1}(\lambda +A)^{-1}}{(1+z)^{\alpha +\beta +\beta _0-1}(2\pi -i\log (z))^{\tilde{c}}}R(z,A)xdz\\{} & {} \quad = \frac{g_{1,\zeta }(\lambda )(-\lambda )^{\alpha -1}}{(1-\lambda )^{\alpha +\beta +\beta _0-1} (2\pi -i\log (-\lambda ))^{\tilde{c}}}(\lambda +A)^{-1}x+ g_{1,\zeta }(\lambda )T^{''}_{\lambda }x, \end{aligned}$$

where

$$\begin{aligned} T^{''}_{\lambda }:=\frac{1}{2\pi i}\int _{\Gamma }\frac{z^{\alpha -1}}{(1+z)^{\alpha +\beta +\beta _0-1}(2\pi -i\log (z))^{\tilde{c}}(z+\lambda )}R(z,A)dz, \end{aligned}$$

with \(\Gamma \) the path defined in the proof of Proposition 3.3. The function \(z\mapsto (2\pi -i\log (z))^{-\tilde{c}}R(z,A)\) is integrable on \(\Gamma \) and by Lemma 5.9 in [34], for \(z\in \Gamma \) and \(|\lambda |\ge 1\), one has

$$\begin{aligned} \left| \frac{z^{\alpha -1} g_{1,\zeta }(\lambda )}{(1+z)^{\alpha +\beta +\beta _0-1}(z+\lambda )}\right| \lesssim \frac{ |g_{1,\zeta }(\lambda )|}{|1-\lambda |}\le C; \end{aligned}$$

thus, \(\sup \{\Vert g_{1,\zeta }(\lambda )T^{''}_{\lambda }\Vert _{{\mathcal {L}}(X)}\mid \lambda \in i{\mathbb {R}},\;|\lambda |\ge 1\}<\infty \), and since

$$\begin{aligned} \sup \left\{ \left\| \frac{g_{1,\zeta }(\lambda )(-\lambda )^{\alpha -1}}{(1-\lambda )^{\alpha +\beta +\beta _0-1} (2\pi -i\log (-\lambda ))^{\tilde{c}}}(\lambda +A)^{-1}\right\| _{{\mathcal {L}}(X)}\mid \lambda \in i{\mathbb {R}}, |\lambda |\ge 1\right\} <\infty , \end{aligned}$$

by hypothesis, it follows that

$$\begin{aligned}{} & {} \sup \left\{ |g_{\alpha ,\zeta }(\lambda )|\Vert (\lambda +A)^{-1}A^{\alpha -1}(1+A)^ {-\beta -\beta _0-\alpha +1}\right. \\{} & {} \quad \left. (2\pi -i\log (A))^{-\tilde{c}}\Vert _{{\mathcal {L}}(X)}\mid \lambda \in i {\mathbb {R}}, |\lambda |\ge 1\right\} <\infty . \end{aligned}$$

\(\bullet \) Case 3: \(\alpha \in (1,2)\). It follows from the moment inequality (applied to \(\alpha -1\in (0,1)\)) that

$$\begin{aligned}{} & {} \Vert g_{1,\tilde{c}}(\lambda )(\lambda +A)^{-1}(A(1+A)^{-1})^{\alpha -1}L_{\beta +\beta _0,\tilde{c}}(A)\Vert _{{\mathcal {L}}(X)}\\{} & {} \quad \lesssim \Vert g_{1,\tilde{c}}(\lambda )(\lambda +A)^{-1}L_{\beta +\beta _0,\tilde{c}}(A)\Vert ^{2-\alpha }_{{\mathcal {L}}(X)} \Vert g_{1,\tilde{c}}(\lambda )(\lambda +A)^{-1}A(1+A)^{-1}L_{\beta +\beta _0,\tilde{c}}(A)\Vert ^{\alpha -1}_{{\mathcal {L}}(X)}. \end{aligned}$$

The first factor must be treated as in Case 1, and the second one as in Case 2.

Estimates

Lemma B.1

Let \(\mu ,\zeta \ge 0\) and \(\nu \ge 1\); then, for each \(t\ge 0\),

  1. 1.

    \(\displaystyle \int _{i\infty }^{-i\infty }e^{-\lambda t} \dfrac{1}{(1+\lambda )^{\nu }(\log (2+\lambda ))^{\zeta }}d\lambda =0\).

  2. 2.

    \(\displaystyle \int _{i\infty }^{-i\infty }e^{-\lambda t} \dfrac{\lambda ^{\mu }}{(1+\lambda )^{\nu +\mu }(2\pi -i\log (\lambda ))^{\zeta }}d\lambda =0\).

Proof

We just present the proof of the first equality, since the proof of the other one is analogous. Let us first show the following statement.

Claim:

$$\begin{aligned}{} & {} \frac{1}{2\pi i}\int _{i\infty }^{-i\infty }e^{-\lambda t} \frac{1}{(1+\lambda )^{\nu }(\log (2+\lambda ))^{\zeta }}d\lambda \nonumber \\{} & {} \quad = \frac{1}{2\pi i}\int _{\Gamma _\varphi }e^{-\lambda t} \frac{1}{(1+\lambda )^{\nu }(\log (2+\lambda ))^{\zeta }}d\lambda , \end{aligned}$$
(B.6)

where \(\Gamma _\varphi =\{re^{i\varphi }\mid r\in [0,\infty )\}\cup \{re^{-i\varphi }\mid r\in [0,\infty )\}\) and \(0<\varphi <\frac{\pi }{2}\).

Namely, for \(t\ge 0\), set \(i{\mathbb {R}}\ni \lambda \mapsto h_t(\lambda ):=e^{-\lambda t} \dfrac{1}{(1+\lambda )^{\nu }(\log (2+\lambda ))^{\zeta }}\), and for each \(R,r>0\) and each \(\eta \in [\varphi ,\pi /2]\), set \(\Gamma ^{+}_{R,\varphi }=\{Re^{i\theta }\mid \theta \in (\varphi ,\frac{\pi }{2})\}\), \(\Gamma ^{+}_{r,\varphi }=\{re^{i\theta }\mid \theta \in (\varphi ,\frac{\pi }{2})\}\), \(\Gamma ^{-}_{R,\varphi }=\{Re^{-i\theta }\mid \theta \in (\varphi ,\frac{\pi }{2})\}\), \(\Gamma ^{-}_{r,\varphi }=\{re^{-i\theta }\mid \theta \in (\varphi ,\frac{\pi }{2})\}\), \(\gamma ^{+}_{\eta }=\{se^{i\eta }\mid s\in [r,R]\}\) and \(\gamma ^{-}_{\eta }=\{se^{-i\eta }\mid s\in [r,R]\}\). By Cauchy’s Integral Theorem,

$$\begin{aligned} -\int _{\Gamma ^{+}_{R,\varphi }}h_t(\lambda )d\lambda +\int _{\gamma ^{+}_{\frac{\pi }{2}}}h_ t(\lambda )d\lambda +\int _{\Gamma ^{+}_{r,\varphi }}h_t(\lambda )d\lambda -\int _{\gamma ^{+}_{\varphi }}h_t(\lambda )d\lambda =0, \end{aligned}$$
(B.7)

and

$$\begin{aligned} \int _{\Gamma ^{-}_{R,\varphi }}h_t(\lambda )d\lambda -\int _{\gamma ^{-}_{\frac{\pi }{2}}}h_t(\lambda ) d\lambda -\int _{\Gamma ^{-}_{r,\varphi }}h_t(\lambda )d\lambda +\int _{\gamma ^{-}_{\varphi }}h_t(\lambda )d\lambda =0. \end{aligned}$$
(B.8)

Note that, by Lemma 5.2.2 in [16],

$$\begin{aligned} \left| \int _{\Gamma ^{\pm }_{R,\varphi }}h_t(\lambda )d\lambda \right|\le & {} \int _{\varphi }^{\frac{\pi }{2}}\frac{R e^{-t\cos \theta }}{|(1+Re^{\pm i\theta })|^{\nu }|\log (2+Re^{\pm i\theta })|^{\zeta }}d\theta \\\le & {} 2^{\nu /2} \int _{\varphi }^{\frac{\pi }{2}}\frac{Re^{-t\cos \theta }}{(1+R)^{\nu }(1+\cos (\theta ))^{\nu /2}\left( \log (2+R)+\frac{1}{2}\log \left( \frac{1+\cos (\theta )}{2}\right) \right) ^{\zeta }}d\theta \\\lesssim & {} \frac{R^{1-\nu }}{\log (2+R)^{\zeta }} \end{aligned}$$

and

$$\begin{aligned} \left| \int _{\Gamma ^{\pm }_{r,\varphi }}h_t(\lambda )d\lambda \right| \lesssim r \end{aligned}$$

By adding Eqs. (B.7) and (B.8), and by taking the limits \(R\rightarrow \infty \), \(r\rightarrow 0\), one gets (B.6).

By Claim, it suffices to prove that

$$\begin{aligned} \frac{1}{2\pi i}\int _{\Gamma _\varphi }e^{-\lambda t} \frac{1}{(1+\lambda )^{\nu }\log (2+\lambda )^{\zeta }}d\lambda =0. \end{aligned}$$

It follows from Cauchy’s Integral Theorem that for each \(0<r<R\),

$$\begin{aligned} \frac{1}{2\pi i}\int _{\Gamma _\varphi }h_t(\lambda )d\lambda +\frac{1}{2\pi i}\int _{\gamma _{R,\varphi }}h_t(\lambda )d\lambda +\frac{1}{2\pi i}\int _{\gamma _{r,\varphi }}h_t(\lambda )d\lambda =0, \end{aligned}$$
(B.9)

with \(\gamma _{R,\varphi }:=\{Re^{i\theta }\mid \theta \in [-\varphi ,\varphi ]\}\) and \(\gamma _{r,\varphi }:=\{r e^{-i\theta }\mid \theta \in [-\varphi ,\varphi ]\}\).

Note that for each sufficiently large R,

$$\begin{aligned} \left| \int _{\gamma _{R,\varphi }} e^{-\lambda t} \frac{1}{(1+\lambda )^{\nu }\log (2+\lambda )^{\zeta }}d\lambda \right| \lesssim \frac{R^{1-\nu }}{\log (2+R)^\zeta }, \end{aligned}$$

and for each sufficiently small r,

$$\begin{aligned} \left| \int _{\gamma _{r,\varphi }} e^{-\lambda t} \frac{1}{(1+\lambda )^{\nu }\log (2+\lambda )^{\zeta }}d\lambda \right| \lesssim r. \end{aligned}$$

The result follows by taking the limits \(r\rightarrow 0\) and \(R\rightarrow \infty \) in relation (B.9). \(\square \)

Lemma B.2

Let \(\varphi \in (0,\frac{\pi }{2}]\) and \(\theta \in (\pi -\varphi ,\pi )\). Set \(\Omega := \overline{{\mathbb {C}}_{+}}{\setminus } (S_\varphi \cup \{0\})\) and let \(\Gamma :=\{re^{i\theta }\mid r \in [0,\infty )\}\cup \{re^{i\theta }\mid r \in [0,\infty )\}\) be oriented from \(\infty e^{i\theta }\) to \(\infty e^{-i\theta }\). Then, for each \(\alpha \in [0,\infty )\), \(\beta \in (0,\infty )\), \(\eta \in (0, 1]\) and each \(\lambda \in \Omega \), one has

  1. (a)

    \(\displaystyle \int _{\Gamma } \dfrac{1}{(\eta +z)^{\beta }(\log (1+\eta +z))^{\zeta }(z+\lambda +\eta -1)} dz= \dfrac{1}{(1-\lambda )^{\beta }(\log (2-\lambda ))^{\zeta }}\).

  2. (b)

    \(\displaystyle \int _{\Gamma } \dfrac{z^{\alpha }}{(\eta +z)^{\alpha +\beta }(2\pi -i\log (-1+\eta +z))^{\zeta }(z+\lambda +\eta -1)} dz= \dfrac{(1-\lambda -\eta )^{\alpha }}{(1-\lambda )(2\pi -i\log (-\lambda ))^{\zeta }}\).

Proof

We just present the proof of item a). Let \(\lambda \in \Omega \). For each \(r \in (0, \text {Im}(\lambda )/2]\) and each \(R\ge 2|\lambda | + 2\), set \(\gamma _{+}:=\{se^{i\theta }\mid s\in [r,R] \}\), \(\gamma _{-}:=\{se^{-i\theta }\mid s\in [r,R]\}\), \(\gamma _{r}:=\{re^{i\nu }\mid \nu \in [-\theta ,\theta ]\}\), \(\gamma _{R}:=\{Re^{i\nu }\mid \nu \in [-\theta ,\theta ]\}\) and \(\gamma _{r,R}:=(-\gamma _{+})\cup \gamma _{-}\cup (-\gamma _{r})\cup \gamma _{R}\). Let \(f_{\beta ,\zeta ,\lambda }:\overline{{\mathbb {C}}_{+}}\rightarrow {\mathbb {C}}\) be given by the law \(f_{\beta ,\zeta ,\lambda }(z)=\dfrac{1}{(\eta +z)^{\beta }(\log (1+\eta +z))^{\zeta }(z+\lambda +\eta -1)}\); then,

$$\begin{aligned} \left| \int _{\gamma _R} f_{\beta ,\zeta ,\lambda }(z) dz\right|\le & {} \int _{-\theta }^{\theta } \frac{R}{|\eta +Re^{i\nu }|^{\beta }\log (|1+\eta +Re^{i\nu }|)^{\zeta }|Re^{i\nu }+\lambda +\eta -1|} d\nu \\\lesssim & {} \frac{R^{-\beta }}{\log (1+R)^{\zeta }}, \end{aligned}$$

which goes to zero as \(R\rightarrow \infty \). Similarly, one can show that

$$\begin{aligned} \lim _{r\rightarrow 0} \left| \int _{\gamma _r} f_{\beta ,\zeta ,\lambda }(z) dz\right| =0. \end{aligned}$$

On the other hand, by the Residue Theorem, one has

$$\begin{aligned} \int _{\gamma _{r,R}} \frac{1}{(\eta +z)^{\beta }(\log (1+\eta +z))^{\zeta }(z+\lambda +\eta -1)} dz =\frac{1}{(1-\lambda )^{\beta }\log (2-\lambda )^{\zeta }}. \end{aligned}$$

Thus, it follows that

$$\begin{aligned}{} & {} \int _{\Gamma } \frac{1}{(\eta +z)^{\beta }(\log (1+\eta +z))^{\zeta }(z+\lambda +\eta -1)} dz\\{} & {} \quad =\lim _{r\rightarrow 0, R\rightarrow \infty } \int _{\gamma _{r,R}} \frac{1}{(\eta +z)^{\beta }(\log (1+\eta +z))^{\zeta }(z+\lambda +\eta -1)} dz=\\{} & {} \quad \frac{1}{(1-\lambda )^{\beta }\log (2-\lambda )^{\zeta }}. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, G., Carvalho, S.L. Refined decay rates of \(C_0\)-semigroups on Banach spaces. J. Evol. Equ. 24, 28 (2024). https://doi.org/10.1007/s00028-024-00957-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-024-00957-8

Keywords

Navigation