Skip to main content
Log in

The Cauchy problem for the generalized Ostrovsky equation with negative dispersion

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to studying the Cauchy problem for the generalized Ostrovsky equation

$$\begin{aligned} u_{t}-\beta \partial _{x}^{3}u-\gamma \partial _{x}^{-1}u+\frac{1}{k+1}\left( u^{k+1}\right) _{x}=0,k\ge 5 \end{aligned}$$

with \(\beta \gamma <0,\gamma >0\). Firstly, we prove that the Cauchy problem for the generalized Ostrovsky equation is locally well-posed in \(H^{s}(\mathbf{R})\left( s>\frac{1}{2}-\frac{2}{k}\right) \). Then, we prove that the Cauchy problem for the generalized Ostrovsky equation is locally well-posed in \(X_{s}(\mathbf{R}): =\Vert f\Vert _{H^{s}}+\left\| {\mathscr {F}}_{x}^{-1}\left( \frac{{\mathscr {F}}_{x} f(\xi )}{\xi }\right) \right\| _{H^{s}}\left( s>\frac{1}{2}-\frac{2}{k}\right) .\) Finally, we show that the solution to the Cauchy problem for generalized Ostrovsky equation converges to the solution to the generalized KdV equation as the rotation parameter \(\gamma \) tends to zero for data belonging to \(X_{s}(\mathbf{R})(s>\frac{3}{2})\). The main difficulty is that the phase function of Ostrovsky equation with negative dispersive \(\beta \xi ^{3}+\frac{\gamma }{\xi }\) possesses the zero singular point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Benilov, On the surface waves in a shallow channel with an uneven bottom, Stud. Appl. Math. 87(1992), 1–14.

    Article  MathSciNet  Google Scholar 

  2. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, Geom. Funct. Anal. 3(1993), 107–156.

    Article  MathSciNet  Google Scholar 

  3. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: the KdV equation, Geom. Funct. Anal. 3(1993), 209–262.

    Article  MathSciNet  Google Scholar 

  4. J. L. Bona, M. Scialom, The effect of change in the nonlinearity and the dispersion relation of model equations for long waves, Can. Appl. Math. Quart. 3(1995), 1–41.

    MathSciNet  MATH  Google Scholar 

  5. L. G. Farah, Global rough solutions to the critical generalized KdV equation, J. Diff. Eqns. 249(2010), 1968–1985.

    Article  MathSciNet  Google Scholar 

  6. L. G. Farah, F. Linares, A. Pastor, The supercritical generalized KdV equation: global well-posedness in the energy space and below, Math. Res. Lett. 18(2011), 357–377.

    Article  MathSciNet  Google Scholar 

  7. L. G. Farah, A. Pastor, On well-posedness and wave operator for the gKdV equation, Bull. Sci. Math. 137 (2013), no. 3, 229–241.

    Article  MathSciNet  Google Scholar 

  8. L. G. Farah, F. Linares, A. Pastor, N. Visciglia, Large data scattering for the defocusing supercritical generalized KdV equation, Comm. P. Diff. Eqns. 43(2018), 118–157.

  9. L. G. Farah, B. Pigott, Nonlinear profile decomposition and the concentration phenomenon for supercritical generalized KdV equations, Indiana Univ. Math. J. 67(2018), 1857–1892.

    Article  MathSciNet  Google Scholar 

  10. L. G. Farah, J. Holmer, S. Roudenko, Instability of solitons revisited, I: The critical generalized KdV equation. Nonlinear dispersive waves and fluids, 65–88, Contemp. Math., 725, Amer. Math. Soc., Providence, RI, 2019.

  11. I. M. Gel’fand, G. E. Shilov, Generalized functions, Vol. I: Properties and operations. Translated by Eugene Saletan Academic Press, New York-London 1964 xviii+423 pp.

  12. O. A. Gilman, R. Grimshaw and Y. A. Stepanyants, Approximate and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math. 95(1995), 115–126.

    Article  MathSciNet  Google Scholar 

  13. A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not. 61(2004), 3287–3308.

    Article  MathSciNet  Google Scholar 

  14. A. Grünrock, New applications of the Fourier restriction norm method to wellposedness problems for nonlinear Evolution Equations, Ph.D. Universit\(\ddot{a}\)t Wuppertal, 2002, Germany, Dissertation.

  15. B. L. Guo, Z. H. Huo, The global attractor of the damped forced Ostrovsky equation, J. Math. Anal. Appl. 329(2007), 392–407.

    Article  MathSciNet  Google Scholar 

  16. Z. H. Huo, Y. L. Jia, Low-regularity solutions for the Ostrovsky equation, Proc. Edinb. Math. Soc. 49(2006), 87–100.

    Article  MathSciNet  Google Scholar 

  17. P. Isaza, J. Mejía, Cauchy problem for the Ostrovsky equation in spaces of low regularity, J. Diff. Eqns. 230(2006), 661–681.

    Article  MathSciNet  Google Scholar 

  18. P. Isaza, J. Mejía, Global Cauchy problem for the Ostrovsky equation, Nonlinear Anal. 67(2007), 1482–1503.

    Article  MathSciNet  Google Scholar 

  19. P. Isaza, J. Mejía, Local well-posedness and quantitative ill-posedness for the Ostrovsky equation, Nonlinear Anal. TMA, 70(2009), 2306–2316.

    Article  MathSciNet  Google Scholar 

  20. P. Isaza, Unique continuation principle for the Ostrovsky equation with negative dispersion, J. Diff. Eqns. 255(2013), 796–811.

    Article  MathSciNet  Google Scholar 

  21. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math. 41(1988), 891–907.

    Article  MathSciNet  Google Scholar 

  22. C. E. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40(1991), 33–69.

    Article  MathSciNet  Google Scholar 

  23. C. E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46(1993), 527–620.

    Article  MathSciNet  Google Scholar 

  24. C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71(1993), 1–21.

    Article  MathSciNet  Google Scholar 

  25. C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9(1996), 573–603.

    Article  MathSciNet  Google Scholar 

  26. S. Klainerman, M. Machedon, Smoothing estimates for null norms and applications, Duke Math. J., 81(1995), 99–133.

    Article  MathSciNet  Google Scholar 

  27. Y. Liu, V. Varlamov, Stability of solitary waves and weak rotation limit for the Ostrovsky equation, J. Diff. Eqns. 203(2004), 159–183.

    Article  MathSciNet  Google Scholar 

  28. S. Levandosky, Y. Liu, Stability of solitary waves of a generalized Ostrovsky equation, SIAM J. Math. Anal. 38(2006), 985–1011.

    Article  MathSciNet  Google Scholar 

  29. Y. S. Li, J. H. Huang, W. Yan, The Cauchy problem for the Ostrovsky equation with negative dispersion at the critical regularity, J. Diff. Eqns. 259(2015), 1379–1408.

    Article  MathSciNet  Google Scholar 

  30. L. Lin, G. Y. Lv, W. Yan, Well-posedness and limit behaviors for a stochastic higher order modified Camassa–Holm equation, Stoch. Dyn. 16(2016), 1650019, 19 pp.

  31. F. Linares, A. Milan\(\acute{e}\)s, Local and global well-posedness for the Ostrovsky equation, J. Diff. Eqns. 222(2006), 325–340.

  32. F. Linares, M. Scialom, On generalized Benjamin type equations, Discrete Contin. Dyn. Syst. 12(2005), 161–174.

    Article  MathSciNet  Google Scholar 

  33. L. A. Ostrovskii, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18(1978), 181–191.

    Google Scholar 

  34. D. Pornnopparath, Small data well-posedness for derivative nonlinear Schrödinger equations, J. Diff. Eqns. 265(2018), 3792–3840.

    Article  MathSciNet  Google Scholar 

  35. E.M. Stein, Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, New Jersey, 1993.

    MATH  Google Scholar 

  36. K. Tsugawa, Well-posedness and weak rotation limit for the Ostrovsky equation, J. Diff. Eqns. 247(2009), 3163–3180.

    Article  MathSciNet  Google Scholar 

  37. H. Wang, S. B. Cui, Well-posedness of the Cauchy problem of Ostrovsky equation in anisotropic Sobolev spaces, J. Math. Anal. Appl. 327(2007), 88–100.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Young core Teachers program of Henan province under Grant Number 2017GGJS044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Yan, W. The Cauchy problem for the generalized Ostrovsky equation with negative dispersion. J. Evol. Equ. 22, 40 (2022). https://doi.org/10.1007/s00028-022-00802-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00802-w

Keywords

Mathematical Subject Classification

Navigation