Skip to main content
Log in

Large deviation principle for stochastic convective Brinkman–Forchheimer equations perturbed by pure jump noise

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This paper concerns some asymptotic analysis of stochastic convective Brinkman–Forchheimer (SCBF) equations subjected to multiplicative pure jump noise in two- and three-dimensional bounded domains. Using a weak convergence approach, we establish the Wentzell–Freidlin type large deviation principle for the strong solution to SCBF equations in a suitable Polish space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. de Acosta, A general non-convex Large deviation result with applications to Stochastic equations, Prob. Theory Relat. Fields, 118 (2000) 483–521.

    Article  MathSciNet  Google Scholar 

  2. A. de Acosta, Large deviations for vector valued Lévy processes, Stochastic Processes and their Applications, 51 (1994), 75–115.

    Article  MathSciNet  Google Scholar 

  3. S.N. Antontsev and H.B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Applicable Analysis, 89(12), 2010, 1805–1825.

    Article  MathSciNet  Google Scholar 

  4. D. Applebaum, Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, Vol. 93, Cambridge University press, 2004.

  5. H. Bessaih and A. Millet, On stochastic modified 3D Navier–Stokes equations with anisotropic viscosity, Journal of Mathematical Analysis and Applications, 462 (2018), 915–956.

  6. M. Boue and P. Dupuis, A variational representation for certain functionals of Brownian motion, Annals of Probability, 26(4) (1998), 1641–1659.

    Article  MathSciNet  Google Scholar 

  7. Z. Brzeźniak, E. Hausenblas and J. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Analysis, 79 (2013), 122-139.

    Article  MathSciNet  Google Scholar 

  8. Z. Brzeźniak and G. Dhariwal, Stochastic tamed Navier-Stokes equations on \(\mathbb{R}^3\): the existence and the uniqueness of solutions and the existence of an invariant measure, J. Math. Fluid Mech., 22(2) (2020), Art. 23, 54 pp.

  9. Z. Brzeźniak, X. Peng and J. Zhai, Well-posedness and large deviations for 2-D Stochastic Navier-Stokes equations with jumps, 2019, Available at arXiv:1908.06228.pdf.

  10. A. Budhiraja and P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. and Math. Stat., 20 (2000) 39–61.

    MathSciNet  MATH  Google Scholar 

  11. A. Budhiraja, P. Dupuis and V. Maroulas, Variational representations for continuous time processes, Ann. Inst. Henri Poincaré Probab. Stat., 47, 725–747.

  12. A. Budhiraja, J. Chen and P. Dupuis, Large deviations for stochastic partial differential equations driven by a Poisson random measure, Stochastic Process. Appl. 123 (2013), 523–560.

    Article  MathSciNet  Google Scholar 

  13. A. Budhiraja and P. Dupuis, Analysis and Approximation of Rare Events: Representations and Weak Convergence Methods, Springer, 2019.

  14. P-L. Chow, Large deviation problem for some parabolic Itô equations, Comm. on Pure and Appl. Math., 45 (1992), 97–120.

  15. I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Well posedness and Large Deviations, Applied Mathematics and Optimization, 61 (2010), 379–420.

    Article  MathSciNet  Google Scholar 

  16. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.

  17. A. Dembo, and O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  18. Z. Dong and R. Zhang, 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: Existence, uniqueness and large deviations, J. Math. Anal. Appl., 492(1) (2020), 124404.

  19. J.-D. Deuschel and D.W. Stroock, Large Deviations, Academic Press, San Diego, California, 1989.

    MATH  Google Scholar 

  20. P. Dupuis, R.S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley-Interscience, New York, 1997.

    Book  Google Scholar 

  21. C. L. Fefferman, K. W. Hajduk and J. C. Robinson, Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, arXiv:1904.03337.

  22. J. Feng and T. Kurtz, Large Deviations for Stochastic Processes, Math. Surveys Monogr. vol. 131, American Mathematical Society, Providence, RI, 2006.

  23. B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Itô-Lévy noise, Stoch. Anal. Appl., 31(3) (2013), 381–426.

    Article  MathSciNet  Google Scholar 

  24. F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Th. Rel. Fields, 102 (1995), 367–391.

    Article  MathSciNet  Google Scholar 

  25. M. I. Freidlin, and A. D. Wentzell, Random Pertubations of Dynamical Systems, Springer-Verlag, New York, 1984.

    Book  Google Scholar 

  26. D. Fujiwara, H. Morimoto, An \(L^r\)-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685–700.

  27. G. P. Galdi, An introduction to the Navier–Stokes initial-boundary value problem. pp. 11-70 in Fundamental directions in mathematical fluid mechanics, Adv. Math. Fluid Mech. Birkhaüser, Basel, 2000.

  28. H. Gao,and H. Liu, Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, Journal of Differential Equations, 267 (2019), 5938–5975.

    Article  MathSciNet  Google Scholar 

  29. K. W. Hajduk and J. C. Robinson, Energy equality for the 3D critical convective Brinkman-Forchheimer equations, Journal of Differential Equations, 263 (2017), 7141–7161.

    Article  MathSciNet  Google Scholar 

  30. A. Ichikawa, Some inequalities for martingales and stochastic convolutions, Stochastic Analysis and Applications, 4(3) (1986), 329–339.

    Article  MathSciNet  Google Scholar 

  31. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library 24, Amsterdam: North-Holland, 1981.

    Google Scholar 

  32. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, 1987.

  33. V. K. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012) 2037–2054.

    Article  MathSciNet  Google Scholar 

  34. G. Kallianpur, J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces, Institute of Math. Stat., 1996.

  35. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.

    MATH  Google Scholar 

  36. J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Paris, Dunod, 1969.

    MATH  Google Scholar 

  37. H. Liu and H. Gao, Stochastic 3D Navier-Stokes equations with nonlinear damping: martingale solution, strong solution and small time LDP, Chapter 2 in Interdisciplinary Mathematical SciencesStochastic PDEs and Modelling of Multiscale Complex System, 9–36, 2019.

  38. H. Liu, L. Lin, C. Sun and Q. Xiao, The exponential behavior and stabilizability of the stochastic 3D Navier-Stokes equations with damping, Reviews in Mathematical Physics, 31 (7) (2019), 1950023.

    Article  MathSciNet  Google Scholar 

  39. W. Liu and M. Röckner, Local and global well-posedness of SPDE with generalized coercivity conditions, Journal of Differential Equations, 254 (2013), 725–755.

    Article  MathSciNet  Google Scholar 

  40. W. Liu, Well-posedness of stochastic partial differential equations with Lyapunov condition, Journal of Differential Equations, 255 (2013), 572–592.

    Article  MathSciNet  Google Scholar 

  41. V. Mandrekar, B. Rüdiger, Stochastic Integration in Banach Spaces, Theory and Applications, Springer, 2015.

  42. U. Manna and M. T. Mohan, Large deviations for the shell model of turbulence perturbed by Lévy noise, Commun. Stoch. Anal., 7(1) (2013), 39–63.

    MathSciNet  Google Scholar 

  43. P.A. Markowich, E.S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29(4) (2016), 1292–1328.

    Article  MathSciNet  Google Scholar 

  44. M. Métivier, Stochastic partial differential equations in infinite dimensional spaces, Quaderni, Scuola Normale Superiore, Pisa, 1988.

  45. M. T. Mohan, Deterministic and stochastic equations of motion arising in Oldroyd fluids of order one: Existence, uniqueness, exponential stability and invariant measures, Stochastic Analysis and Applications, 38(1) (2020), 1–61.

    Article  MathSciNet  Google Scholar 

  46. M. T. Mohan, Well-posedness and asymptotic behavior of the stochastic convective Brinkman-Forchheimer equations perturbed by pure jump noise, Stochastics and Partial Differential Equations: Analysis and Computations, https://doi.org/10.1007/s40072-021-00207-9.

  47. M. T. Mohan, Stochastic convective Brinkman-Forchheimer equations, Submitted, arXiv:2007.09376.

  48. M. T. Mohan, On the convective Brinkman-Forchheimer equations, Submitted.

  49. M. T. Mohan, \(\mathbb{L}^p\)-solutions of deterministic and stochastic convective Brinkman-Forchheimer equations, Submitted, arXiv:2102.01418.

  50. M. T. Mohan, Wentzell-Freidlin Large Deviation Principle for the stochastic convective Brinkman-Forchheimer equations, J. Math. Fluid Mech., 23, 62 (2021).

    Article  MathSciNet  Google Scholar 

  51. M. T. Mohan, Moderate deviation principle for the 2D stochastic convective Brinkman–Forchheimer equations, Stochastics, 2020, https://doi.org/10.1080/17442508.2020.1844708.

  52. M. T. Mohan, and S. S. Sritharan, \(\mathbb{L}^p\)-solutions of the stochastic Navier-Stokes equations subject to Lévy noise with \(\mathbb{L}^m(\mathbb{R}^m)\) initial data, Evol. Equ. Control Theory, 6(3) (2017), 409–425.

  53. E. Motyl, Stochastic Navier–Stokes equations driven by Lévy noise in unbounded 3D domains, Potential Analysis, 38 (2013), 863–912.

  54. M. Röckner, F.-Y. Wang and L. Wu, Large deviations for stochastic generalized porous media equations, Stochastic Processes and their Applications, 116(12) (2006), 1677–1689.

    Article  MathSciNet  Google Scholar 

  55. M. Röckner and X. Zhang, Stochastic tamed 3D Navier-Stokes equation: existence, uniqueness and ergodicity, Probability Theory and Related Fields, 145 (2009) 211–267.

    Article  MathSciNet  Google Scholar 

  56. M. Röckner, T. Zhang and X. Zhang, Large deviations for stochastic tamed 3D Navier-Stokes equations, Applied Mathematics and Optimization, 61 (2010), 267–285.

    Article  MathSciNet  Google Scholar 

  57. M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: Existence, uniqueness and small time large deviations principles, Journal of Differential Equations, 252 (2012), 716–744.

    Article  MathSciNet  Google Scholar 

  58. M. Röckner and T. Zhang, Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26(3) (2007), 255-279.

    Article  MathSciNet  Google Scholar 

  59. K. Sakthivel and S. S. Sritharan, Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise, Evol. Equ. Control Theory, 1(2) (2012), 355–392.

    Article  MathSciNet  Google Scholar 

  60. A. V. Skorokhod, Limit theorems for stochastic processes, Theory of Probability & Its Applications, 1(3), (1956), 261–290.

  61. R. Sowers, Large Deviations for a reaction diffusion equation with non-Gaussian perturbations, Ann. Probab., 20 (1992), 504–537.

    Article  MathSciNet  Google Scholar 

  62. S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Processes and their Applications, 116 (2006), 1636–1659.

    Article  MathSciNet  Google Scholar 

  63. D. Stroock, An Introduction to the Theory of Large Deviations, Springer-Verlag, Universitext, New York, 1984.

    Book  Google Scholar 

  64. A. Swiech, and J. Zabczyk, Large deviations for Stochastic PDE with Lévy noise, Journal of Functional Analysis, 260 (3) (2011), 674–723.

    Article  MathSciNet  Google Scholar 

  65. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984.

  66. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 1995.

  67. S. R. S. Varadhan, Large deviations and Applications, 46, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1984.

  68. T. Xu, T. Zhang, Large deviation principles for \(2\)-D Stochastic Navier-Stokes equations driven by Lévy processes, Journal of Functional Analysis, 257 (2009), 1519–1545.

    Article  MathSciNet  Google Scholar 

  69. X. Yang, J. Zhai, and T. Zhang, Large deviations for SPDEs of jump type, Stochastics and Dynamics, 15(4) 2015, 1550026 (30 pages).

  70. J. Zabczyk and S. Peszat, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Cambridge University Press, 2010

  71. J. Zhai and T. Zhang, Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, Bernoulli, 21(4), 2015, 2351-2392.

    Article  MathSciNet  Google Scholar 

  72. H. Zhao, Yamada-Watanabe theorem for stochastic evolution equation driven by Poisson random measure, ISRN Probability and Statistics, Volume 2014, Article ID 982190, 7 pages.

Download references

Acknowledgements

M. T. Mohan would like to thank the Department of Science and Technology (DST), India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110). The author sincerely would like to thank the reviewers for their valuable comments and suggestions, which helped us to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil T. Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M.T. Large deviation principle for stochastic convective Brinkman–Forchheimer equations perturbed by pure jump noise. J. Evol. Equ. 21, 4931–4971 (2021). https://doi.org/10.1007/s00028-021-00736-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00736-9

Keywords

Mathematics Subject Classification

Navigation