Skip to main content
Log in

Maximal Lorentz regularity for the Keller–Segel system of parabolic–elliptic type

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We construct local strong solutions of Keller–Segel system of parabolic–elliptic type for arbitrary initial data in the homogeneous Besov space which is scaling invariant. We also show that the solution exists globally in time for small initial data. The solutions belong to the Lorentz space in time direction since our method relies on the maximal Lorentz regularity of heat equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

  2. P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math. 114 (1995), no. 2, 181–205.

    Article  MathSciNet  Google Scholar 

  3. P. Biler, M. Cannone, I. A. Guerra, and G. Karch, Global regular and singular solutions for a model of gravitating particles, Math. Ann. 330 (2004), no. 4, 693–708.

    Article  MathSciNet  Google Scholar 

  4. A. Blanchet, J. A. Carrillo, and N. Masmoudi, Infinite time aggregation for the critical Patlak–Keller–Segel model in \({\mathbb{R}}^2\), Comm. Pure Appl. Math. 61 (2008), no. 10, 1449–1481.

  5. M. Cannone, A generalization of a theorem by Kato on Navier–Stokes equations, Rev. Mat. Iberoamericana 13 (1997), no. 3, 515–541.

    Article  MathSciNet  Google Scholar 

  6. T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity 21 (2008), no. 5, 1057–1076.

    Article  MathSciNet  Google Scholar 

  7. C. Conca, E. Espejo, and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in \({\mathbb{R}}^2\), European J. Appl. Math. 22 (2011), no. 6, 553–580.

  8. L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. 72 (2004), 1–28.

    Article  MathSciNet  Google Scholar 

  9. J. I. Diaz, T. Nagai, and J.-M. Rakotoson, Symmetrization techniques on unbounded domains: application to a chemotaxis system on \({ R}^N\), J. Differential Equations 145 (1998), no. 1, 156–183.

    Article  MathSciNet  Google Scholar 

  10. H. Fujita and T. Kato, On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269–315.

  11. Y. Giga, Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations 62 (1986), no. 2, 186–212.

    Article  MathSciNet  Google Scholar 

  12. Y. Giga and T. Miyakawa, Navier–Stokes flow in \({R}^3\) with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), no. 5, 577–618.

  13. T. Iwabuchi, Global well-posedness for Keller–Segel system in Besov type spaces, J. Math. Anal. Appl. 379 (2011), no. 2, 930–948.

    Article  MathSciNet  Google Scholar 

  14. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), no. 2, 819–824.

    Article  MathSciNet  Google Scholar 

  15. T. Kato, Strong \(L^{p}\)-solutions of the Navier-Stokes equation in \({ R}^m\), with applications to weak solutions, Math. Z. 187 (1984), no. 4, 471–480.

    Article  MathSciNet  Google Scholar 

  16. E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), no. 3, 399–415.

    Article  MathSciNet  Google Scholar 

  17. H. Koch and D. Tataru, Well-posedness for the Navier–Stokes equations, Adv. Math. 157 (2001), no. 1, 22–35.

    Article  MathSciNet  Google Scholar 

  18. H. Kozono, T. Ogawa, and Y. Taniuchi, Navier-Stokes equations in the Besov space near \(L^\infty \) and \(BMO\), Kyushu J. Math. 57 (2003), no. 2, 303–324.

    Article  MathSciNet  Google Scholar 

  19. H. Kozono and Y. Shimada, Bilinear estimates in homogeneous Triebel–Lizorkin spaces and the Navier–Stokes equations, Math. Nachr. 276 (2004), 63–74.

    Article  MathSciNet  Google Scholar 

  20. H. Kozono and S. Shimizu, Strong solutions of the Navier–Stokes equations based on the maximal Lorentz regularity theorem in Besov spaces, J. Funct. Anal. 276 (2019), no. 3, 896–931.

    Article  MathSciNet  Google Scholar 

  21. H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), no. 5–6, 959–1014.

    Article  MathSciNet  Google Scholar 

  22. T. Nagai, Global existence of solutions to a parabolic system for chemotaxis in two space dimensions, Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), 1997, pp. 5381–5388

  23. T. Nagai and T. Senba, Behavior of radially symmetric solutions of a system related to chemotaxis, Proceedings of the Second World Congress of Nonlinear Analysts, Part 6 (Athens, 1996), 1997, pp. 3837–3842.

  24. T. Ogawa and S. Shimizu, End-point maximal regularity and its application to two-dimensional Keller–Segel system, Math. Z. 264 (2010), no. 3, 601–628.

    Article  MathSciNet  Google Scholar 

  25. T. Takeuchi, The Keller–Segel system of parabolic-parabolic type in homogeneous Besov spaces framework (submitted).

  26. M. E. Taylor, Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), no. 9–10, 1407–1456.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiki Takeuchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, T. Maximal Lorentz regularity for the Keller–Segel system of parabolic–elliptic type. J. Evol. Equ. 21, 4619–4640 (2021). https://doi.org/10.1007/s00028-021-00728-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-021-00728-9

Keywords

Navigation