Skip to main content
Log in

Existence and regularity of infinitesimally invariant measures, transition functions and time-homogeneous Itô-SDEs

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We show existence of an infinitesimally invariant measure m for a large class of divergence and non-divergence form elliptic second order partial differential operators with locally Sobolev regular diffusion coefficient and drift of some local integrability order. Subsequently, we derive regularity properties of the corresponding semigroup which is defined in \(L^s({\mathbb {R}}^d,m)\), \(s\in [1,\infty ]\), including the classical strong Feller property and classical irreducibility. This leads to a transition function of a Hunt process that is explicitly identified as a solution to an SDE. Further properties of this Hunt process, like non-explosion, moment inequalities, recurrence and transience, as well as ergodicity, including invariance and uniqueness of m, and uniqueness in law, can then be studied using the derived analytical tools and tools from generalized Dirichlet form theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker-Planck-Kolmogorov equations, Mathematical Surveys and Monographs, 207. American Mathematical Society, Providence, RI, 2015.

    Book  Google Scholar 

  2. V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, On positive and probability solutions of the stationary Fokker–Planck–Kolmogorov equation, (Russian) Dokl. Akad. Nauk 444 (2012), no. 3, 245–249; translation in Dokl. Math. 85 (2012), no. 3, 350–354.

  3. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York, 2011.

    MATH  Google Scholar 

  4. L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Revised edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015.

    Book  Google Scholar 

  5. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

    Book  Google Scholar 

  6. M. Gim, G. Trutnau, Conservativeness criteria for generalized Dirichlet forms, Journal of Mathematical Analysis and Applications, Volume 448, Issue 2, (2017), pp. 1419–1449.

    Article  MathSciNet  Google Scholar 

  7. M. Gim, G. Trutnau, Recurrence criteria for generalized Dirichlet forms, J. Theoret. Probab. 31 (2018), no. 4, 2129–2166.

    Article  MathSciNet  Google Scholar 

  8. I. Gyöngy, T. Martinez, On stochastic differential equations with locally unbounded drift, Czechoslovak Math. J. (4) 51 (126) (2001) 763–783.

    Article  MathSciNet  Google Scholar 

  9. Q. Han, F. Lin, Elliptic partial differential equations, Courant Lecture Notes in Mathematics, American Mathematical Society, Providence, RI, 1997.

  10. N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, 14. Springer-Verlag, New York-Berlin, 1980.

    Book  Google Scholar 

  11. N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations 32 (2007), no. 1-3, 453–475.

    Article  MathSciNet  Google Scholar 

  12. H. Lee, G. Trutnau, Existence, uniqueness and ergodic properties for time-homogeneous Itô-SDEs with locally integrable drifts and Sobolev diffusion coefficients, to appear in The Tohoku Mathematical Journal, arXiv:1708.01152v4.

  13. G. Da Prato, J. Zabczyk, Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  14. D. Revuz, M. Yor, Continuous martingales and Brownian motion, Third edition. Grundlehren der Mathematischen Wissenschaften 293. Springer-Verlag, Berlin, 1999.

  15. A. Rozkosz, Stochastic representation of diffusions corresponding to divergence form operators, Stochastic Process. Appl. 63 (1996), no. 1, 11–33.

    Article  MathSciNet  Google Scholar 

  16. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus (French), Ann. Inst. Fourier (Grenoble), 15 1965 fasc. 1, 189–258.

  17. W. Stannat, (Nonsymmetric) Dirichlet operators on\(L^1\): Existence, uniqueness and associated Markov processes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28. 1999. No. 1. 99-140.

  18. D. W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, Séminaire de Probabilités, XXII, 316–347, Lecture Notes in Math., 1321, Springer, Berlin, 1988.

  19. M. Takeda, G. Trutnau, Conservativeness of non-symmetric diffusion processes generated by perturbed divergence forms, Forum Math. 24 (2012), no. 2, 419–444.

    Article  MathSciNet  Google Scholar 

  20. N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 265–308.

    MathSciNet  MATH  Google Scholar 

  21. N. S. Trudinger, Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients, Math. Z. 156 (1977), no. 3, 291–301.

    Article  MathSciNet  Google Scholar 

  22. G. Trutnau, On Hunt processes and strict capacities associated with generalized Dirichlet forms, Infin. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005), no. 3, 357-382.

    Article  MathSciNet  Google Scholar 

  23. X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab. 16 (2011), no. 38, 1096–1116.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Trutnau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2017R1D1A1B03035632)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Trutnau, G. Existence and regularity of infinitesimally invariant measures, transition functions and time-homogeneous Itô-SDEs. J. Evol. Equ. 21, 601–623 (2021). https://doi.org/10.1007/s00028-020-00593-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-020-00593-y

Keywords

Mathematics Subject Classification

Navigation