Skip to main content
Log in

Characterizations of interior polar sets for the degenerate p-parabolic equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This paper deals with different characterizations of sets of nonlinear parabolic capacity zero, with respect to the parabolic p-Laplace equation. Specifically we prove that certain interior polar sets can be characterized by sets of zero nonlinear parabolic capacity. Furthermore we prove that zero capacity sets are removable for bounded supersolutions and that sets of zero capacity have a relation to a certain parabolic Hausdorff measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Avelin, T. Kuusi, and G. Mingione. Parabolic intrinsic geometries and potential estimates of zero order, in preparation.

  2. Avelin B., Kuusi T., Parviainen M.: Variational parabolic capacity. Discrete Contin. Dyn. Syst. 35(12), 5665–5688 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. J. Bishop and Y. Peres. Fractal sets in probability and analysis, Preprint.

  4. G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5 (1954), 131–295.

  5. G. Choquet. Lectures on analysis. Vol. I: Integration and topological vector spaces. Edited by J. Marsden, T. Lance and S. Gelbart. W. A. Benjamin, Inc., New York-Amsterdam, 1969.

  6. M. Christ. A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloquium Mathematicum, 60/61 (1990), 601–628.

  7. E. DiBenedetto. Degenerate parabolic equations. Universitext. Springer-Verlag, New York, 1993.

  8. Droniou J., Porretta A., Prignet A.: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19(2), 99–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. L.C. Evans and R.F. Gariepy. Wiener’s test for the heat equation. Arch. Rational Mech. Anal., 78 (1982), 293–314.

  10. L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 1991.

  11. Gariepy R., Ziemer W.P.: Removable sets for quasilinear parabolic equations. J. London Math. Soc. 21(2), 311–318 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Gariepy and W.P. Ziemer. Thermal capacity and boundary regularity. J. Differential Equations., 45 (1982), 374–388.

  13. J. Heinonen, T. Kilpeläinen and O. Martio. Nonlinear potential theory of degenerate elliptic equations. Unabridged republication of the 1993 original. Dover Publications, Inc., Mineola, NY, 2006. xii+404 pp.

  14. Howroyd J.D.: On dimension and on the existence of sets of finite positive Hausdorff measure. Proc. London Math. Soc. 70, 581–604 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Hytönen and A. Kairema. Systems of dyadic cubes in a doubling metric space. Colloq. Math., 126 (2012), 1–33.

  16. Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen. Nonlinear parabolic capacity and polar sets of superparabolic functions. Math. Ann. 355(4) (2013), 1349–1381.

  18. J. Kinnunen and P. Lindqvist. Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. 185 (2006), 411–435.

  19. J. Kinnunen and P. Lindqvist. Unbounded supersolutions of some quasilinear parabolic equations: a dichotomy. Nonlinear Anal., 131 (2016), 229–242.

  20. Kinnunen J., Lukkari T., Parviainen M.: An existence result for superparabolic functions. J. Funct. Anal. 258, 713–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Kinnunen, T. Lukkari, and M. Parviainen. Local approximation of superharmonic and superparabolic functions in nonlinear potential theory J. Fixed Point Theory Appl. 13(1) (2013), 291–307.

  22. R. Korte, T. Kuusi and M. Parviainen. A connection between a general class of superparabolic functions and supersolutions. J. Evol. Equ. 10(1) (2010), 1–20.

  23. Korte R., Kuusi T., Siljander J.: Obstacle problem for nonlinear parabolic equations. J. Differential Equations 246(9), 3668–3680 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Kuusi. Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7(4) (2008), 673–716.

  25. T. Kuusi. Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation. Differential Integral Equations 22(11–12) (2009), 1211–1222.

  26. T. Kuusi, P. Lindqvist andM. Parviainen. Shadows of infinities. Ann. Mat. Pura Appl., doi:10.1007/s10231-015-0511-1.

  27. Lanconelli E.: Sul problema di Dirichlet per l’equazione del calore. Ann. Mat. Pura Appl. 97, 83–114 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Lanconelli. Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui. Ann. Mat. Pura Appl., 106 (1975), 11–38.

  29. P. Lindqvist and M. Parviainen. Irregular time dependent obstacles. J. Funct. Anal. 263 (2012), 2458–2482.

  30. V. Liskevich, I. Skrypnik and Z. Sobol. Estimates of solutions for the parabolic p-Laplacian equation with measure via parabolic nonlinear potentials. Commun. Pure Appl. Anal. 12(4) (2013), 1731–1744.

  31. P. Mattila Geometry of sets and measures in Euclidean spaces. Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge, 1995

  32. V. Maz’ya. On the continuity at a boundary point of solutions of quasi-linear elliptic equations. Vestnik Leningrad Univ. Math., 3 (1976), 225–242; English translation of Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 25 (1970), 42–55 (Russian).

  33. F. Petitta. Renormalized solutions of nonlinear parabolic equations with general measure data. Ann. Mat. Pura Appl. (4) 187(4) (2008), 563–604.

  34. Pierre M.: Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14(3), 522–533 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. L.M.R. Saraiva Removable singularities and quasilinear parabolic equations. Proc. London Math. Soc. (3), 48(3) (1984), 385–400.

  36. L.M.R. Saraiva. Removable singularities of solutions of degenerate quasilinear equations. Ann. Mat. Pura Appl. (4), 141 (1985), 187–221.

  37. S.J. Taylor and N.A. Watson. A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Cambridge Philos. Soc., 97(2) (1985), 325–344.

  38. Watson N.A.: Thermal capacity. Proc. London Math. Soc. 37, 342–362 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Avelin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avelin, B., Saari, O. Characterizations of interior polar sets for the degenerate p-parabolic equation. J. Evol. Equ. 17, 827–848 (2017). https://doi.org/10.1007/s00028-016-0339-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0339-1

Mathematics Subject Classification

Keywords

Navigation