Skip to main content
Log in

Asymptotic behavior of the isoperimetric deficit for expanding convex plane curves

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the expansion of a convex closed plane curve C 0 along its outward normal direction with speed G(1/k), where k is the curvature and \({G \left(z \right) :\left(0, \infty \right) \rightarrow \left( 0, \infty \right)}\) is a strictly increasing function. We show that if \({{\rm lim}_{z \rightarrow \infty} G \left(z \right) = \infty}\), then the isoperimetric deficit \({D \left(t \right) : = L^{2}\left(t \right) -4 \pi A \left(t \right)}\) of the flow converges to zero. On the other hand, if \({{\rm lim}_{z \rightarrow \infty}G \left(z \right) = \lambda \in (0,\infty)}\), then for any number d ≥ 0 and \({\varepsilon > 0}\), one can choose an initial curve C 0 so that its isoperimetric deficit \({D \left(t \right)}\) satisfies \({\left \vert D \left(t \right) -d \right \vert < \varepsilon}\) for all \({t \in [0, \infty)}\). Hence, without rescaling, the expanding curve C t will not become circular. It is close to some expanding curve P t , where each P t is parallel to P 0. The asymptotic speed of P t is given by the constant \({\lambda}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews B.: Evolving convex curves. Cal. of Var. & PDEs. 7(4), 315–371 (1998)

    Article  MATH  Google Scholar 

  2. Angenent S.: The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79–96 (1988)

    MATH  MathSciNet  Google Scholar 

  3. Chow B.: Geometric Aspects of Aleksandrov Reflection and Gradient Estimates for Parabolic Equations. Comm. Anal. & Geom. 5(2), 389–409 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Chow B., Gulliver R.: Aleksandrov reflection and nonlinear evolution equations. I: The n-sphere and n-ball Cal. of Var. & PDEs. 4, 249–264 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Chow B., Liou L.-P., Tsai D.-H.: Expansion of embedded curves with turning angle greater than -π. Inven. Math. 123, 415–429 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Chow B., Tsai D.-H.: Geometric expansion of convex plane curves. J. Diff. Geom. 44, 312–330 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Y.-C. Lin, D.-H. Tsai, Using Aleksandrov reflection to estimate the location of the center of expansion, Proc. of the AMS, vol. 138, no. 2 (2010), 557–565, 2010.

  8. Matano H.: Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo Sec. IA 29, 401–441 (1982)

    MATH  MathSciNet  Google Scholar 

  9. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.

  10. J. Urbas, An expansion of convex hypersurfaces, J. of Diff. Geom. 33 (1991), 91–125. Correction to, ibid. 35 (1992), 763–765.

  11. Yagisita H.: Asymptotic behavior of starshaped curves expanding by V=1−K. Diff. Integ. Eqs. 18(2), 225–232 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ho Tsai.

Additional information

Both authors are supported by the National Science Council and the National Center for Theoretical Sciences of Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Tsai, DH. Asymptotic behavior of the isoperimetric deficit for expanding convex plane curves. J. Evol. Equ. 14, 779–794 (2014). https://doi.org/10.1007/s00028-014-0238-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0238-2

Mathematics Subject Classifications

Navigation