Skip to main content
Log in

Echoes of life: unveiling the cryptic legacy of Megabalanus azoricus dead shells on epibiont assemblages

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Barnacles provide a unique substrate for a diverse array of species. This paper focuses on the epibionts inhabiting the giant barnacle Megabalanus azoricus, exploring their diversity, interactions with host, and the ecological implications in bioengineering. This species is a valuable and vital socioeconomic resource, endemic of the Macaronesian region, and OSPAR species, hence with some degree of international concern. Empty barnacles were collected in different locations on São Miguel Island, Azores, at two depths (surface and 10 m): one in the south (Vila Franca do Campo) and two in the north (Ponta do Cintrão and Fenais da Ajuda). Epibionts were identified to the lowest possible taxonomic category and barnacle height, base, and opening diameters were recorded. One hundred eighteen different taxa were observed, of which 30 were algae, mainly red, and the most predominant were polychaetes, arthropods, and sipunculids, with a significant prevalence of polychaetes and arthropods at the north. Arthropods and polychaetes were more abundant in the shallower samples, while sipunculids were only found in the deeper ones. Only two barnacles did not present juveniles of M. azoricus on their walls, with this species representing approximately 21% of all epibionts. The empty shells of M. azoricus are of key importance for a high diversity and quantity of epibionts, especially when compared with other basibionts, and also vital for the establishment and recruitment of the younger barnacles. However, this may be impaired by its increasing socioeconomic importance as a marine delicacy for locals and tourists, threatening its sustainability and ecological role within the coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abecasis RC, Afonso P, Colaço A et al (2015) Marine conservation in the Azores: evaluating marine protected area development in a remote island context. Front Mar Sci 2:1–16. https://doi.org/10.3389/fmars.2015.00104

    Article  Google Scholar 

  • Afonso P, Schmiing M, Fontes J et al (2018) Effects of marine protected areas on coastal fishes across the Azores archipelago, mid-North Atlantic. J Sea Res 138:34–47. https://doi.org/10.1016/j.seares.2018.04.003

    Article  Google Scholar 

  • Almada VC, Garcia G, Santos RS (1987) Padrões de actividade e estrutura dos territórios dos machos parentais de Parablennius pilicornis Cuvier (Pisces: Blenniidae) da costa portuguesa. Análise Psicológica 5:261–280

    Google Scholar 

  • Amao AO, Kaminski MA, Frontalini F (2016) Morphological abnormalities in benthic foraminifera caused by an attached epibiont foraminifer. J Micropalaeontol 35:173–178. https://doi.org/10.1144/jmpaleo2015-032

    Article  Google Scholar 

  • Ansari KGMT, Bhadury P (2017) Occurrence of epibionts associated with meiofaunal basibionts from the world’s largest mangrove ecosystem, the Sundarbans. Mar Biodivers 47:539–548. https://doi.org/10.1007/s12526-016-0502-5

    Article  Google Scholar 

  • Arsenault DJ, Marchinko KB, Palmer AR (2001) Precise tuning of barnacle leg length to coastal wave action. Proc R Soc Lond B Biol Sci 268:2149–2154. https://doi.org/10.1098/rspb.2001.1776

    Article  CAS  Google Scholar 

  • Azevedo JMN (1992) Algae-associated marine molluscs in the Azores. Biol J Lin Soc 46:177–187. https://doi.org/10.1111/j.1095-8312.1992.tb00859.x

    Article  Google Scholar 

  • Borges PAV, Bried J, Costa AC et al (2010) Description of the terrestrial and marine biodiversity of the Azores. In: Borges PAV, Costa A, Cunha R et al (eds) A list of the terrestrial and marine biota from the Azores. Principia, Cascais, Lisbon, pp 9–33

    Google Scholar 

  • Buschbaum C, Reise K (1999) Effects of barnacle epibionts on the periwinkle Littorina littorea (L.). Helgol Mar Res 53:56–61. https://doi.org/10.1007/PL00012138

    Article  Google Scholar 

  • Buschbaum C, Saier B (2001) Growth of the mussel Mytilus edulis L. in the Wadden Sea affected by tidal emergence and barnacle epibionts. J Sea Res 45:27–36. https://doi.org/10.1016/S1385-1101(00)00061-7

    Article  Google Scholar 

  • Cardoso P, Borges PAV, Costa AC et al (2008) A perspectiva arquipelágica: Açores. In: Martín JL, Arechavaleta M, Borges PAV, Faria B (eds) TOP 100 : as cem espécies ameaçadas prioritárias em termos de gestão na região europeia biogeográfica da Macaronésia. Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias, pp 421–449

  • Coelho JDSC (2017) Taxonomia de poliquetas associados aos rodolitos (corallinophycidae, rhodophyta), na praia do Seixas, João Pessoa, Paraíba, Brasil

  • de Almeida Alves-Júnior F, Martins DEG, de Araújo Silva KC et al (2022) Barnacles as epibionts in crustaceans from the great amazon reef system (GARS) northern of Brazil: new records and new host associations. Thalassas: an International Journal of Marine Sciences 38:1371–1378. https://doi.org/10.1007/s41208-022-00480-y

    Article  Google Scholar 

  • Demirel YK, Uzun D, Zhang Y et al (2017) Effect of barnacle fouling on ship resistance and powering. Biofouling 33:819–834. https://doi.org/10.1080/08927014.2017.1373279

    Article  PubMed  Google Scholar 

  • Denny MW (1985) Wave forces on intertidal organisms: a case study1. Limnol Oceanogr 30:1171–1187. https://doi.org/10.4319/lo.1985.30.6.1171

    Article  Google Scholar 

  • Denny MW (2006) Ocean waves, nearshore ecology, and natural selection. Aquat Ecol 40:439–461. https://doi.org/10.1007/s10452-004-5409-8

    Article  Google Scholar 

  • Diogo H, Gil Pereira J, Schmiing M (2016) Catch me if you can: non-compliance of limpet protection in the Azores. Mar Policy 63:92–99. https://doi.org/10.1016/j.marpol.2015.10.007

    Article  Google Scholar 

  • Dionísio MAM (2013) Megabalanus azoricus (Pilsbry, 1916): building a scientific basis for its management. Doctoral dissertation, Departamento de Biologia, Universidade dos Açores, pp 1–150

  • Dionísio M, Rodrigues A, Costa A (2007) Reproductive biology of Megabalanus azoricus (Pilsbry), the Azorean Barnacle. Invertebr Reprod Dev 50:155–162. https://doi.org/10.1080/07924259.2007.9652240

    Article  Google Scholar 

  • Dionísio MA, Micael J, Parente MI et al (2008) Contributo para o conhecimento da biodiversidade marinha da ilha das Flores, pp 1–20

  • Dioníso AM, Rodrigues A, Pires P, Costa AC (2009) Bases para a gestão e conservação de Megabalanus azoricus. In 1° Congresso de Desenvolvimento Regional de Cabo Verde/15° Congresso da APDR, pp 319–337

  • Dionísio M, Costa A, Rodrigues A (2012) Re-examination of Megabalanus azoricus (Cirripedia: Balanomorpha): a natural and edible resource to preserve. Mar Biodivers Rec 5:e110. https://doi.org/10.1017/S1755267212000590

    Article  Google Scholar 

  • Downes S, Firth LB, Knights AM (2023) Epibionts provide their basibionts with associational resistance to predation but at a cost. Mar Environ Res 186:105941. https://doi.org/10.1016/j.marenvres.2023.105941

    Article  CAS  PubMed  Google Scholar 

  • Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Mar Ecol Prog Ser 296:13–29. https://doi.org/10.3354/meps296013

    Article  Google Scholar 

  • Furtado MA (2013) As lapas (Patella aspera Röding, 1798) como habitat de macroalgas, pp 1–54

  • GAMPA (2015) Componente marinha dos Parques Naturais de Ilha: uma radiografia da rede de Áreas Marinhas Protegidas costeiras dos Açores. Relatório técnico do programa BALA, pp 11–124

  • Harder T (2008) Marine epibiosis: concepts, ecological consequences and host defence. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and industrial biofouling. Springer series on biofilms, vol 4. Springer, Berlin

    Google Scholar 

  • Kędra M, Włodarska-Kowalczuk M (2008) Distribution and diversity of sipunculan fauna in high Arctic fjords (west Svalbard). Polar Biol 31:1181–1190. https://doi.org/10.1007/s00300-008-0456-6

    Article  Google Scholar 

  • Kostylev VE, Erlandsson J, Ming MY, Williams GA (2005) The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecol Complex 2:272–286. https://doi.org/10.1016/j.ecocom.2005.04.002

    Article  Google Scholar 

  • Leslie HM, Breck EN, Chan F et al (2005) Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc Natl Acad Sci 102:10534–10539. https://doi.org/10.1073/pnas.0503874102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin J, Arechavaleta M, Borges P, Faria B (2008) Top100. Las 100 especies amenazadas prioritarias de gestión en la región europea biogeográfica de la Macaronesia. Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de canarias

  • Martins G, Thompson R, Hawkins S et al (2008) Rocky intertidal community structure in oceanic islands: scales of spatial variability. Mar Ecol Prog Ser 356:15–24. https://doi.org/10.3354/meps07247

    Article  Google Scholar 

  • Martins GM, Faria J, Furtado M, Neto AI (2014) Shells of Patella aspera as ‘islands’ for epibionts. J Mar Biol Assoc UK 94:1027–1032. https://doi.org/10.1017/S0025315414000447

    Article  Google Scholar 

  • Martins LHH (2018) Estudo da influência da epibiose do protozoário ciliado Epistylis pygmaeum Ehrenberg, 1838 sobre o zooplâncton, pp 1–116

  • Murina GVV (1984) Ecology of Sipuncula. Marine ecology progress series Oldendorf, pp 1–7

  • Murua J, Burrows MT, Hughes RN et al (2014) Phenotypic variation in shell form in the intertidal acorn barnacle Chthamalus montagui: distribution, response to predators and life history trade-offs. Mar Biol 161:2609–2619. https://doi.org/10.1007/s00227-014-2532-5

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Ng K, Phillips MR, Borges P et al (2014) Maintaining a way of life for São Miguel Island (the Azores archipelago, Portugal): an assessment of coastal processes and protection. Sci Total Environ 481:142–156. https://doi.org/10.1016/j.scitotenv.2014.01.067

    Article  CAS  PubMed  Google Scholar 

  • Oromí P (2004) Biospeleology in Macaronesia. AMCS. Bulletin 19:98–104

    Google Scholar 

  • OSPAR (2003) Guidelines for the guidelines for the management of dredged material—convention for the protection of the marine environment of the North-East Atlantic—ministerial meeting of the OSPAR commission, 1998–2006

  • Pereira F, Piló D, Carvalho AN et al (2022) Epibiont assemblages on limpet shells: biodiversity drivers in intertidal rocky shores. Mar Environ Res 174:105556. https://doi.org/10.1016/j.marenvres.2022.105556

    Article  CAS  PubMed  Google Scholar 

  • Quartau R, Tempera F, Mitchell NC et al (2012) Morphology of the Faial Island shelf (Azores): the interplay between volcanic, erosional, depositional, tectonic and mass-wasting processes. Geochem Geophys Geosyst. https://doi.org/10.1029/2011GC003987

    Article  Google Scholar 

  • Raffaelli D, Hawkins SJ (1996) Intertidal ecology. Springer, Berlin

    Book  Google Scholar 

  • Ramsby B, Massaro A, Marshall E et al (2011) Epibiont–basibiont interactions: examination of ecological factors that influence specialization in a two-sponge association between Geodia vosmaeri (Sollas, 1886) and Amphimedon erina (de Laubenfels, 1936). Ancient animals, new challenges. Springer, Netherlands, Dordrecht, pp 331–340

    Chapter  Google Scholar 

  • Regala JT (1999) Contribuição para o estudo da biologia da craca dos Açores, Megabalanus azoricus (Pilsbry 1916). Universidade do Algarve, Faro Portugal, Relatório de Estágio do Curso de Licenciatura em Biologia Marinha DOP

    Google Scholar 

  • Romero-Wetzel MB (1987) Sipunculans as inhabitants of very deep, narrow burrows in deep-sea sediments. Mar Biol 96:87–91. https://doi.org/10.1007/BF00394841

    Article  Google Scholar 

  • Santos RS, Hawkins S, Monteiro LR et al (1995) Marine research, resources and conservation in the Azores. Aquat Conserv 5:311–354

    Article  Google Scholar 

  • Santos FD, Valente MA, Miranda PMA et al (2004) Climate change scenarios in the Azores and Madeira Islands. World Resour Rev 16(4):473–491

    Google Scholar 

  • Silva ACF, Mendonça V, Paquete R et al (2015) Habitat provision of barnacle tests for overcrowded periwinkles. Mar Ecol 36:530–540. https://doi.org/10.1111/maec.12161

    Article  Google Scholar 

  • Southward AJ (1998) New observations on barnacles (Crustacea: Cirripedia) of the Azores region. Universidade dos Açores Arquipélago, pp 11–27

  • Steffani C, Branch G (2003) Growth rate, condition, and shell shape of Mytilus galloprovincialis: responses to wave exposure. Mar Ecol Prog Ser 246:197–209. https://doi.org/10.3354/meps246197

    Article  Google Scholar 

  • Torres P, Milla I Figueras D, Diogo H, Afonso P (2022) Risk assessment of coastal fisheries in the Azores (north-eastern Atlantic). Fish Res 246:106156. https://doi.org/10.1016/j.fishres.2021.106156

    Article  Google Scholar 

  • Vieira EA, Bueno M (2019) Small spatial scale effects of wave action exposure on morphological traits of the limpet Lottia subrugosa. J Mar Biol Assoc UK 99:1309–1315. https://doi.org/10.1017/S0025315419000195

    Article  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine Ecology Progress 58:175–189

    Article  Google Scholar 

  • Wahl M (2010) Epibiosis. In: Dürr S, Thomasson JC (eds) Biofouling. Wiley-Blackwell, Oxford, pp 100–108

    Google Scholar 

  • Wahl M, Mark O (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66. https://doi.org/10.3354/meps187059

    Article  Google Scholar 

  • Wernberg T, Tuya F, Thomsen MS, Kendrick GA (2010) Turban snails as habitat for foliose algae: contrasting geographical patterns in species richness. Mar Freshw Res 61:1237. https://doi.org/10.1071/MF09184

    Article  CAS  Google Scholar 

  • Wirtz P, Araújo R, Southward AJ (2006) Cirripedia of madeira. Helgol Mar Res 60:207–212. https://doi.org/10.1007/s10152-006-0036-5

    Article  Google Scholar 

  • Wong MS (2017) The convention for the protection of the marine environment of the North-East Atlantic (the ‘OSPAR Convention’) (and Annexes I, II, III, IV). Multilateral environmental treaties. Edward Elgar Publishing, London, pp 189–198

    Chapter  Google Scholar 

  • WWF (2004) Living planet report. http://www.panda.org/news_facts/publications/key_publications/living_planet_report/lpr04/index.cfm. Accessed 13 July 2023

  • Young PS (1998) Cirripedia (Crustacea) from the “Campagne Biaçores” in the Azores région, including a generic revision of Verrucidae. Zoosystema 20:1–68

    Google Scholar 

Download references

Funding

This work is funded by National Funds through FCT—Foundation for Science and Technology under the project UIDB/50027/2020. It was also supported by FEDER (85%) and regional funds (15%) through Programa Operacional Açores 2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by AL and DF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Larrea.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Animal research in this study was ethically approved by the project UIDB/50027/2020 and conducted in accordance with the legal regulations of the region. Every effort was taken to ensure the well-being and ethical treatment of the animals involved. The study adhered to the principles of Good Laboratory Practice (GLP), maintaining rigorous standards for research conduct.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larrea, A., Ferreira, D., Costa, A.C. et al. Echoes of life: unveiling the cryptic legacy of Megabalanus azoricus dead shells on epibiont assemblages. Aquat Sci 86, 55 (2024). https://doi.org/10.1007/s00027-024-01071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-024-01071-0

Keywords

Navigation