Skip to main content

Advertisement

Log in

Limnological history of three lakes from the former asbestos mining region of Thetford Mines (southern Quebec, Canada)

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Lakes of the Bécancour River Basin (BRB), located in the former asbestos mining region of Thetford Mines (southern Quebec, Canada), are heavily exposed to pollution. A previous paleolimnological investigation revealed that Trout Lake underwent severe eutrophication following the drainage of former Black Lake for mining purposes in the 1950s. Questions remained regarding the causes and level of degradation of other BRB lakes located upstream (Lake Bécancour) and further downstream (lakes William and Joseph), which also suffer from eutrophication. This paper presents diatom analyses performed on sediment cores from these lakes, along with complementary carbon (C) and nitrogen (N) data, that fill this knowledge gap. It also provides new insights into the natural limnological history of the Thetford Mines region. Low planktonic to benthic diatom ratios in oldest Lake Bécancour sediments revealed lower water levels during the Holocene Thermal Maximum (ca. 9000–5500 cal years BP). They later increased while diatom-inferred water pH decreased in response to cooler and wetter climatic conditions. Lake William responded more strongly than other BRB lakes to anthropogenic settlement activities in its watershed, with the emergence of Aulacoseira subarctica marking its transition to a mesotrophic state at about 1885 CE. Similar to Trout Lake, the drainage of Black Lake further enhanced the eutrophication of lakes William and Joseph, as illustrated by increases in sediment δ13C, decreases in C/N ratios, and proliferation of nutrient-dependent species such as Cyclostephanos invisitatus/makarovae. Our study highlights long-lasting and dramatic effects of such hydrological interventions on multi-lake systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Jacques and Pienitz 2022b). The inserted photograph illustrates asbestos mining waste piles on the riverbanks in Thetford Mines

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  • [BAPE] Bureau d’audiences publiques sur l’environnement (2020) L’état des lieux et la gestion de l’amiante et des résidus miniers amiantés: rapport d’enquête et d’audience publique (no 351). Gouvernement du Québec, Québec

    Google Scholar 

  • [BAPE] Bureau d’audiences publiques sur l’environnement (2021) Projet d’augmentation de la capacité d’entreposage des résidus miniers et des stériles à la mine de fer du lac Bloom: rapport d’enquête et d’audience publique (no 361). Gouvernement du Québec, Québec

    Google Scholar 

  • Barry GR (1999) A history of Megantic County: Downhomers of Quebec’s eastern townships. Evans Books, Lower Sackville

    Google Scholar 

  • Bhiry N, Filion L (1996) Holocene plant succession in a dune-swale environment of southern Québec: a macrofossil analysis. Écoscience 3:330–342. https://doi.org/10.1080/11956860.1996.11682351

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170. https://doi.org/10.1111/j.1469-8137.1996.tb04521.x

    Article  CAS  PubMed  Google Scholar 

  • Björck S, Wohlfarth B (2001) Chronostratigraphic techniques in paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1. Kluwer Academic Publishers, Dordrecht, pp 205–245

    Chapter  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474. https://doi.org/10.1214/11-BA618

    Article  Google Scholar 

  • Blaauw M, Christen JA, Aquino Lopez MA, Vazquez JE, Gonzalez OM, Belding T, Theiler J, Gough B, Karney C (2021) rbacon: Age-depth modelling using Bayesian statistics. https://CRAN.R-project.org/package=rbacon. Accessed 4 August 2021

  • Blais JM, Kalff J, Cornett RJ, Evans RD (1995) Evaluation of 210Pb dating in lake sediments using stable Pb, Ambrosia pollen, and 137Cs. J Paleolimnol 13:169–178. https://doi.org/10.1007/BF00678105

    Article  Google Scholar 

  • Chauvin L (1979) Dépôts meubles de la région de Thetford-Mines—Victoriaville: rapport préliminaire. Ministère des Richesses naturelles, Québec

    Google Scholar 

  • Denys L, Muylaert K, Krammer K, Joosten T, Reid M, Rioual P (2003) Aulacoseira subborealis stat. nov. (Bacillariophyceae): a common but neglected plankton diatom. N Hedwig 77:407–428

    Article  Google Scholar 

  • Dixit SS, Smol JP, Charles DF, Hughes RM, Paulsen SG, Collins GB (1999) Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can J Fish Aquat Sci 56:131–152. https://doi.org/10.1139/f98-148

    Article  Google Scholar 

  • Donati-Daoust F, Dubois É (2020) Mémoire sur l’environnement minier à Thetford Mines. Bureau d’audiences publiques sur l’environnement, Québec

    Google Scholar 

  • Dunnington DW, Roberts S, Norton SA, Spooner IS, Kurek J, Kirk JL, Muir DCG, White CE, Gagnon GA (2020) The distribution and transport of lead over two centuries as recorded by lake sediments from northeastern North America. Sci Total Environ 737:140212

    Article  CAS  PubMed  Google Scholar 

  • [ECCC] Environment and Climate Change Canada (2019a) Normales climatiques canadiennes. https://climat.meteo.gc.ca/climate_normals/index_f.html. Accessed 1 April 2020

  • [ECCC] Environment and Climate Change Canada (2019b) Données historiques. https://climat.meteo.gc.ca/historical_data/search_historic_data_f.html. Accessed 1 April 2020

  • Emerman SH (2020) Prevention of lake destruction and tailings dam failure: open-pit backfilling options for the Champion Iron Bloom Lake Mine, Quebec, Canada. Malach Consulting, Spanish Fork

    Google Scholar 

  • Engstrom DR, Hansen BCS (1985) Postglacial vegetational change and soil development in southeastern Labrador as inferred from pollen and chemical stratigraphy. Can J Botany 63:543–561. https://doi.org/10.1139/b85-070

    Article  CAS  Google Scholar 

  • Faucher B (2007) Portrait du bassin-versant du lac William. Envirosult, Theford Mines

    Google Scholar 

  • Fortier C (1983) Black Lake: lac d'amiante 1882–1982. Tome I: amiante et chrome des Appalaches - Cent ans d'histoire. Ateliers Graphiti Barbeau, Tremblay, Saint-Georges-de-Beauce

    Google Scholar 

  • Gibson CE, Anderson NJ, Haworth EY (2003) Aulacoseira subarctica: taxonomy, ecology and palaeoecology. Eur J Phycol 38:83–101. https://doi.org/10.1080/0967026031000094102

    Article  Google Scholar 

  • Godbout PM (2013) Géologie du quaternaire et hydrostratigraphie des dépôts meubles du bassin versant de la rivière Bécancour et des zones avoisinantes. Université du Québec à Montréal, Québec

    Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–25. https://doi.org/10.1016/0098-3004(87)90022-7

    Article  Google Scholar 

  • [GROBEC] Groupe de concertation des bassins versants de la zone Bécancour (2015) Présence de métaux dans l’eau de surface du bassin versant de la rivière Bécancour, secteur minier de Thetford Mines. GROBEC, Plessisville

    Google Scholar 

  • [GROBEC] Groupe de concertation des bassins versants de la zone Bécancour (2022) Suivi de la qualité de l’eau du secteur minier de la Haute-Bécancour en 2021. GROBEC, Plessisville

    Google Scholar 

  • Hausmann S, Larocque-Tobler I, Richard PJ, Pienitz R, St-Onge G, Fye F (2011) Diatom-inferred wind activity at Lac du Sommet, southern Québec, Canada: a multiproxy paleoclimate reconstruction based on diatoms, chironomids and pollen for the past 9500 years. Holocene 21:925–938. https://doi.org/10.1177/0959683611400199

    Article  Google Scholar 

  • Houk V, Klee R, Tanaka H (2014) Atlas of freshwater centric diatoms with a brief key and descriptions. Part IV. Stephanodiscaceae B. Stephanodiscus, Cyclostephanos, Pliocaenicus, Hemistephanos, Stephanocostis, Mesodictyon & Spicaticribra. Fottea 14:1–532

    Google Scholar 

  • Houk V, Klee R, Tanaka H (2017) Atlas of freshwater centric diatoms with a brief key and descriptions. Second emended edition of part I and II. Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Fottea 17:1–616

    Google Scholar 

  • Jacques O, Pienitz R (2022a) Impacts des activités minières d’amiante sur l’évolution du lac à la Truite d’Irlande, région de Thetford Mines (Québec, Canada) / Impacts of asbestos mining activities on the evolution of Lac à la Truite d’Irlande, Thetford Mines region (Quebec, Canada). Can Water Res J 47:40–60. https://doi.org/10.1080/07011784.2021.2004930

    Article  Google Scholar 

  • Jacques O, Pienitz R (2022b) Asbestos mining waste impacts on the sedimentological evolution of the Bécancour River chain of lakes (southern Quebec, Canada). Sci Total Environ 807:151079. https://doi.org/10.1016/j.scitotenv.2021.151079

    Article  CAS  PubMed  Google Scholar 

  • Jacques O, Pienitz R (2022c) Assessment of asbestos fiber contamination in lake sediment cores of the Thetford Mines region, southern Quebec (Canada). Environ Adv 8:100232. https://doi.org/10.1016/j.envadv.2022.100232

    Article  CAS  Google Scholar 

  • Juggins S (2014) C2 version 1.7.7: software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  • Juggins S (2017) rioja: analysis of quaternary science data, R package version 0.9–21. University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  • Köster D, Racca JM, Pienitz R (2004) Diatom-based inference models and reconstructions revisited: methods and transformations. J Paleolimnol 32:233–246. https://doi.org/10.1023/B:JOPL.0000042907.90500.5a

    Article  Google Scholar 

  • Laperrière L, Fallu M-A, Hausmann S, Pienitz R, Muir D (2008) Paleolimnological evidence of mining and demographic impacts on Lac Dauriat, Schefferville (subarctic Québec, Canada). J Paleolimnol 40:309–324. https://doi.org/10.1007/s10933-007-9162-6

    Article  Google Scholar 

  • Lavoie M, Richard PJ (2000) Postglacial water-level changes of a small lake in southern Quebec, Canada. Holocene 10:621–634. https://doi.org/10.1191/095968300672141865

    Article  Google Scholar 

  • Lavoie I, Hamilton PB, Campeau S, Grenier M, Dillon PJ (2008) Guide d’identification des diatomées des rivières de l’Est du Canada. Presses de l’Université du Québec, Québec

    Book  Google Scholar 

  • Loewen B, Chapdelaine C, Richard PJ (2005) Holocene shoreline occupations and water-level changes at Lac Mégantic, Québec. Can J Archaeol 29:267–288

    Google Scholar 

  • Loudiki M, Cazaubon A, Hasnaoui M (1994) Dynamique pluriannuelle d’une population d’Aulacoseira granulata Sim. var. angustissima (Müller) (Bacillariophyceae centrale) dans le lac-réservoir Hassan I (Maroc). Ecol Mediterranea 20:109–120. https://doi.org/10.3406/ecmed.1994.1735

    Article  Google Scholar 

  • Lowe RL (1974) Environmental requirements and pollution tolerances of freshwater diatoms. United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Marcoux-Dubois JD, Fréchette-Laframboise V (1984) 150 ans de souvenirs 1834–1984 : Saint-Ferdinand d’Halifax. Imprimerie Roy et Laliberté Inc., Thetford Mines

    Google Scholar 

  • Masi M-E, Bourget D (2007) Diagnostic sur les ressources et les usages de la Haute-Bécancour, rapport technique. Canards illimités Canada, Québec

    Google Scholar 

  • McAndrews JH (1988) Human disturbance of North American forests and grasslands: the fossil pollen record. In: Huntley B, Webb T (eds) Handbook of vegetation science, volume 7: Vegetation history. Springer, Dordrecht, pp 673–697. https://doi.org/10.1007/978-94-009-3081-0_18

    Chapter  Google Scholar 

  • [MDDEFP] Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs (2013) Bilan annuel de conformité environnementale 2010: les effluents liquides du secteur minier. Direction des politiques de l’eau, Québec

    Google Scholar 

  • [MERN] Ministère de l'Énergie et des Ressources Naturelles (2021) Système d'information géominière du Québec. https://sigeom.mines.gouv.qc.ca. Accessed 13 October 2021

  • Meyers PA (2009) Organic geochemical proxies. In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments. Springer, Dordrecht, pp 659–662

    Chapter  Google Scholar 

  • Morales E, Rosen B, Spaulding S (2013) Fragilaria crotonensis. https://diatoms.org/species/fragilaria_crotonensis. Accessed 3 January 2023

  • Morin P, Boulanger F (2005) Portrait de l’environnement du bassin versant de la rivière Bécancour Envir-Action [updated and revised in 2008 and 2014 by Paris A Chauvette L]. Enviro-Action, Plessisville

    Google Scholar 

  • [MRNFP] Ministère des Ressources naturelles, de la Faune et des Parcs (2003) Zones de végétation et domaines bioclimatiques du Québec. Direction des inventaires forestiers, Québec

    Google Scholar 

  • Muller SD, Richard PJ, Guiot J, de Beaulieu JL, Fortin D (2003) Postglacial climate in the St. Lawrence lowlands, southern Québec: pollen and lake-level evidence. Palaeogeogr Palaeoclim Palaeoecol 193:51–72. https://doi.org/10.1016/S0031-0182(02)00710-1

    Article  Google Scholar 

  • Neil K (2018) Ecosystem responses to holocene climate variability through the analysis of high-resolution lake sediment cores from southwestern Québec. University of Ottawa, Ottawa

    Google Scholar 

  • Overpeck JT, Webb T, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108. https://doi.org/10.1016/0033-5894(85)90074-2

    Article  Google Scholar 

  • Parent M, Occhietti S (1999) Late Wisconsinan deglaciation and glacial lake development in the Appalachians of Southeastern Québec. Geogr Phys Quat 53:117–135. https://doi.org/10.7202/004859ar

    Article  Google Scholar 

  • Paterson AM, Köster D, Reavie ED, Whitmore TJ (2020) Preface: paleolimnology and lake management. Lake Reserv Manag 36:205–209. https://doi.org/10.1080/10402381.2020.1805998

    Article  Google Scholar 

  • Pienitz R, Vincent WF (2003) Generic approaches towards water quality monitoring based on paleolimnology. In: Kumagai M, Vincent WF (eds) Freshwater management: global versus local perspectives. Springer, Tokyo, pp 61–82

    Google Scholar 

  • Piette G (1953) Drainage of black lake: project. United Asbestos Corporation, Québec

    Google Scholar 

  • Qi H, Coplen TB, Geilmann H, Brand WA, Böhlke JK (2003) Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun Mass Sp 17:2483–2487. https://doi.org/10.1002/rcm.1219

    Article  CAS  Google Scholar 

  • Räsänen J, Kenttämies K, Sandman O (2007) Paleolimnological assessment of the impact of logging on small boreal lakes. Limnologica 37:193–207. https://doi.org/10.1016/j.limno.2006.12.003

    Article  CAS  Google Scholar 

  • Raupp SV, Torgan LC, Melo S (2009) Planktonic diatom composition and abundance in the Amazonian floodplain Cutiuaú Lake are driven by the flood pulse. Acta Limnol Bras 21:227–234

    Google Scholar 

  • Reavie E (2013) Paleolimnological reconstructions for the white iron chain of lakes. University of Minnesota Duluth, Ely

    Google Scholar 

  • Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, Ramsey CB, Butzin M, Cheng H, Edwards RL, Friedrich M et al (2020) The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62:725–757. https://doi.org/10.1017/RDC.2020.41

    Article  CAS  Google Scholar 

  • Renberg I, Bigler C, Bindler R, Norberg M, Rydberg J, Segerström U (2009) Environmental history: a piece in the puzzle for establishing plans for environmental management. J Environ Manag 90:2794–2800. https://doi.org/10.1016/j.jenvman.2009.03.008

    Article  CAS  Google Scholar 

  • Schelske CL, Donar CM, Stoermer EF (1999) A test of paleolimnologic proxies for the planktonic/benthic ratio of microfossil diatoms in Lake Apopka. In: Mayama S, Idei M, Koizumi I (eds) Proceedings of the fourteenth international diatom symposium September 1996. Koeltz Scientific Books, Koenigstein, p 367

  • Schultz K, Hübener T, Dreßler M, Jacques O, Frank M, Springer A, Van AT (2021) Disentangling the taxonomic history of the widespread and overlooked centric diatom Stephanodiscus makarovae and its transfer to Cyclostephanos. Taxonomy 1:425–437. https://doi.org/10.3390/taxonomy1040030

    Article  Google Scholar 

  • Serieyssol CA, Edlund MB, Kallemeyn LW (2009) Impacts of settlement, damming, and hydromanagement in two boreal lakes: a comparative paleolimnological study. J Paleolimnol 42:497–513. https://doi.org/10.1007/s10933-008-9300-9

    Article  Google Scholar 

  • Shuman BN, Marsicek J (2016) The structure of Holocene climate change in mid-latitude North America. Quat Sci Rev 141:38–51. https://doi.org/10.1016/j.quascirev.2016.03.009

    Article  Google Scholar 

  • Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Spaulding SA, Potapova MG, Bishop IW, Lee SS, Gasperak TS, Jovanoska E, Furey PC, Edlund MB (2021) Diatoms.org: supporting taxonomists, connecting communities. Diatom Res 36:291–304. https://doi.org/10.1080/0269249X.2021.2006790

    Article  Google Scholar 

  • Statistics Canada (2019) Census profile, 2016 census. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof. Accessed 5 April 2021

  • Tremblay R (2015) Élaboration d’une méthode basée sur les diatomées pour évaluer l’intégrité écologique des lacs tempérés du Québec (MILQ). Université Laval, Québec

    Google Scholar 

  • Tremblay R, Pienitz R, Legendre P (2014) Reconstructing phosphorus levels using models based on the modern diatom assemblages of 55 lakes in southern Quebec. Can J Fish Aquat Sci 71:887–914. https://doi.org/10.1139/cjfas-2013-0469

    Article  CAS  Google Scholar 

  • van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133. https://doi.org/10.1007/BF02334251

    Article  Google Scholar 

  • Viau AE, Gajewski K, Sawada MC, Fines P (2006) Millennial-scale temperature variations in North America during the Holocene. J Geophys Res 111:D09102. https://doi.org/10.1029/2005JD006031

    Article  Google Scholar 

  • Viau AE, Ladd M, Gajewski K (2012) The climate of North America during the past 2000 years reconstructed from pollen data. Global Planet Change 84/85:75–83. https://doi.org/10.1016/j.gloplacha.2011.09.010

    Article  Google Scholar 

  • Villeneuve M (2013) Rapport de caractérisation des résidus miniers, région de Thetford Mines. Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs, Québec

    Google Scholar 

Download references

Acknowledgements

This study was part of a larger research project mainly financed by the following organizations: Association de protection du lac à la Truite d’Irlande (APLTI), Association du lac William (ALW), Association des riveraines et riverains du lac Joseph (ARRLJ), Ville de Thetford Mines, Municipalité d’Irlande, Municipalité de Saint-Ferdinand, Municipalité de Saint-Pierre-Baptiste, Municipalité d’Inverness, MRC des Appalaches, and MRC de l’Érable. We are grateful to all of them and also thank the Fonds de recherche du Québec - Nature et technologies (FRQNT) for a doctoral scholarship awarded to O. Jacques. Financial support granted to R. Pienitz by the Natural Sciences and Engineering Research Council of Canada (NSERC) secured the operation and maintenance of the Laboratoire de paléoécologie aquatique (LPA) at Université Laval.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: O.J. and R.P. Formal analysis: O.J. Funding acquisition: R.P. Investigation: O.J. Methodology: O.J. Project administration: R.P. Resources: R.P. Supervision: R.P. Writing—original draft: O.J. Writing—review and editing: O.J. and R.P.

Corresponding author

Correspondence to Olivier Jacques.

Ethics declarations

Conflict of interest

The organizations that funded this study may or may not benefit from our findings on the causes and level of degradation of BRB lakes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 6, 7.

Fig. 6
figure 6

(modified from Jacques and Pienitz 2022b). Note: the red lines correspond to weighted mean ages, whereas the black lines delimit 95% confidence intervals. Darker shaded areas represent higher age probabilities. The horizontal dashed lines mark the boundaries set for each model. Calibrated 14C dates included and discarded from the models are respectively represented by the blue and purple markers, whereas the green markers are non-radiocarbon dates [210Pb, 137Cs, StPb (stable Pb rise), Ambr (Ambrosia rise)]. For each model, the upper left panel depicts the Markov Chain Monte Carlo (MCMC) iterations performed to estimate the sedimentation times (upper middle panel) and their memory (i.e., variability; upper right panel). Prior and posterior distributions for the sedimentation times and memories are respectively represented by the green curves and grey histograms

Age-depth models established using Bacon for sediment cores retrieved in a Lake Bécancour, b Lake William, and c Lake Joseph

Fig. 7
figure 7

CONISS trees from diatom stratigraphies of sediment cores a BEC, b WIL, and c JOS

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacques, O., Pienitz, R. Limnological history of three lakes from the former asbestos mining region of Thetford Mines (southern Quebec, Canada). Aquat Sci 85, 89 (2023). https://doi.org/10.1007/s00027-023-00985-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-023-00985-5

Keywords

Navigation