Skip to main content

Advertisement

Log in

Effects of warming and CO2 enrichment on O2 consumption, porewater oxygenation and pH of subtidal silt sediment

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We investigated the effects of seawater warming and CO2 enrichment on the microbial community metabolism (using O2 consumption as a proxy) in subtidal silt sediment. Intact sediment cores, without large dwelling infauna, were incubated for 24 days at 12 (in situ) and 18 °C to confirm the expected temperature response. We then enriched the seawater overlying a subset of cold and warm-incubated cores with CO2 (+ ΔpCO2: 253–396 µatm) for 16 days and measured the metabolic response. Warming increased the depth-integrated volume-specific O2 consumption (Rvol), the maximum in the volume-specific O2 consumption at the bottom of the oxic zone (Rvol,bmax) and the volume-specific net O2 production (Pn,vol), and decreased the O2 penetration depth (O2-pd) and the depth of Rvol,bmax (depthbmax). Benthic photosynthesis oscillated the pH in the upper 2 mm of the sediment. CO2 enrichment of the warm seawater did not alter this oscillation but shifted the pH profile towards acidity; the effect was greatest at the surface and decreased to a depth of 12 mm. Confoundment rendered the CO2 treatment of the cold seawater inconclusive. In warm seawater, we found no statistically clear effect of CO2 enrichment on Rvol, Rvol,bmax, Pn,vol, O2-pd, or depthbmax and therefore suspect that this perturbation did not alter the microbial community metabolism. This confirms the conclusion from experiments with other, contrasting types of sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets are available from the corresponding author on reasonable request.

References

  • Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci USA 110:8603–8608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson AJ, Mackenzie FT, Lerman A (2006) Coastal ocean CO2–carbonic acid–carbonate sediment system of the Anthropocene. Global Biogeochem Cycles 20:GB1S92

    Google Scholar 

  • Bauer JE, Cai W-J, Raymond PA, Bianchi T, Hopkinson CS, Regnier PAG (2013) The changing carbon cycle of the coastal ocean. Nature 504:61–70

    CAS  PubMed  Google Scholar 

  • Berg PN, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510

    CAS  Google Scholar 

  • Boetius A (2019) Global change microbiology—big questions about small life for our future. Nat Rev Microbiol 17:331–332

    CAS  PubMed  Google Scholar 

  • Borges AV, Gypens N (2010) Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol Oceanogr 55:346–353

    CAS  Google Scholar 

  • Boudreau BP, Canfield DE (1992) A comparison of closed- and open-system models for porewater pH and calcite-saturation state. Geochim Cosmochim Acta 57:317–334

    Google Scholar 

  • Boudreau BP, Middelburg JJ, Meysman FJR (2010) Carbonate compensation dynamics. Geophys Res Lett 37:L03603

    Google Scholar 

  • Broecker WS, Peng T-H (1974) Gas exchange rates between air and sea. Tellus 26(1–2):21–35

    CAS  Google Scholar 

  • Cai W-J, Hu X, Huang W-J, Murrell MC, Lehrter JC, Lohrenz SE et al (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770

    CAS  Google Scholar 

  • Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632

    CAS  PubMed  Google Scholar 

  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB et al (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40

    CAS  PubMed  Google Scholar 

  • Canfield DE, Raiswell R, Bottrell S (1992) The reactivity of sedimentary iron minerals toward sulfide. Am J Sci 292:659–683

    CAS  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    CAS  PubMed  Google Scholar 

  • Cyronak T, Schulz KG, Jokiel PL (2016a) Response to Waldbusser et al. (2016): calcium carbonate saturation state: on myths and this or that stories. ICES J Mar Sci 73(3):569–571

    Google Scholar 

  • Cyronak T, Schulz KG, Jokiel PL (2016b) The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES J Mar Sci 73(3):558–562

    Google Scholar 

  • Davis MW, McIntire CD (1983) Effects of physical gradients on the production dynamics of sediment-associated algae. Mar Ecol Prog Ser 13:103–114

    CAS  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCL(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissolution of carbonic acid in seawater media. Deep Sea Res 34(10):1733–1743

    CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements: PICES Special Publication 3. http://cdiac.ornl.gov/oceans/Handbook_2007.html

  • Duarte CM, Hendriks IE, Moore TS, Olsen YS, Steckbauer A, Ramajo L et al (2013) Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36:221–236

    CAS  Google Scholar 

  • Dushoff J, Kain MP, Bolker BM (2019) I can see clearly now: reinterpreting statistical significance. Methods Ecol Evol 10:756–759

    Google Scholar 

  • Dutta H, Dutta A (2016) The microbial aspect of climate change. Energ Ecol Environ 14:209–232

    Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    CAS  PubMed  Google Scholar 

  • Fink A, den Haan J, Chennu A, Uthicke S, de Beer D (2017) Ocean acidification changes abiotic processes but not biotic processes in coral reef sediments. Front Mar Sci 4:73

    Google Scholar 

  • Gazeau F, Van Rijswijk P, Pozzato L, Middelburg JJ (2014) Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean. PLoS One 9(4):e94068

    PubMed  PubMed Central  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of Seawater Analysis. Basel Verlag, Chemie

    Google Scholar 

  • Hancke K, Glud RN (2004) Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquatic Microb Ecol 37:265–281

    Google Scholar 

  • Hancke K, Sorell BK, Lund-Hansen LC, Larsen M, Hancke T, Glud RN (2014) Effects of temperature and irradiance on a benthic microalgal community: a combined two-dimensional oxygen and fluorescence imaging approach. Limnol Oceanogr 59:1599–1611

    CAS  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed–the role of sulphate reduction. Nature 296:643–645

    Google Scholar 

  • Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30(1):111–122

    Google Scholar 

  • Jourabchi P, Van Cappellen P, Regnier P (2005) Quantitative interpretation of pH distributions in aquatic sediments: a reaction–transport modeling approach. Am J Sci 305:919–956

    CAS  Google Scholar 

  • Kitidis V, Laverock B, McNeill LC, Beesley A, Cummings D, Tait K et al (2011) Impact of ocean acidification on benthic and water column ammonia oxidation. Geophys Res Lett 38:L21603

    Google Scholar 

  • Kristensen E (1984) Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sediment and the overlying water. J Exp Mar Biol Ecol 75(2):171–190

    Google Scholar 

  • Kristensen E (1993) Seasonal variations in benthic community metabolism and nitrogen dynamics in a shallow, organic-poor Danish lagoon. Estuar Coast Shelf Sci 36:565–586

    CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Li Y-H, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38(5):703–714

    CAS  Google Scholar 

  • Lohrer AM, Thrush SF, Gibbs MM (2004) Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431:1092–1095

    CAS  PubMed  Google Scholar 

  • Lohrer AM, Thrush SF, Hunt L, Hancock N, Lundquist C (2005) Rapid reworking of subtidal sediments by burrowing spatangoid urchins. J Exp Mar Biol Ecol 321:155–169

    Google Scholar 

  • Lyle M (1983) The brown–green color transition in marine sediment: a marker of the Fe(III)–Fe(II) redox boundary. Limnol Oceanogr 28(5):1026–1033

    CAS  Google Scholar 

  • Marinelli RL (1992) Effects of polychaetes on silicate dynamics and fluxes in sediments: Importance of species, animal activity and polychaete effects on benthic diatoms. J Mar Res 50:745–779

    CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RN (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    CAS  Google Scholar 

  • Osinga R, Lewis WE, Wopereis JLM, Vriezen C, van Duyl FC (1995) Effects of the sea urchin Echinocardium cordatum on oxygen uptake and sulfate reduction in experimental benthic systems under increasing organic loading. Ophelia 41:221–236

    Google Scholar 

  • Osinga R, Kop AJ, Malschaert JFP, van Duyl FC (1997) Effects of the sea urchin Echinocardium cordatum on bacterial production and carbon flow in experimental benthic systems under increasing organic loading. J Sea Res 37:109–121

    Google Scholar 

  • Provoost P, van Heuven S, Soetaert K, Laane RWPM, Middelburg JJ (2010) Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 7:3869–3878

    CAS  Google Scholar 

  • Ramesh K, Hu MY, Thomsen J, Bleich M, Melzner F (2017) Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification. Nat Commun 8:1709

    PubMed  PubMed Central  Google Scholar 

  • Rasmussen H, Jørgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar Ecol Prog Ser 81:289–303

    CAS  Google Scholar 

  • Rassmann J, Lansard B, Gazeau F, Guidi-Guilvard L, Pozzato L, Alliouane S et al (2018) Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: results from core incubations (Bay of Villefranche, NW Mediterranean Sea). Mar Chem 203:102–119

    CAS  Google Scholar 

  • Reimers CE, Rutgenberg KC, Canfield DE, Christiansen MB, Martin JB (1996) Pore water pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochim Cosmochim Acta 60:4037–4057

    CAS  Google Scholar 

  • Rizzo WM, Dailey SK, Lackey GJ, Christian RR, Berry BE, Wetzel RL (1996) A metabolism-based trophic index for comparing the ecological values of shallow-water sediment habitats. Estuaries 19:247–256

    Google Scholar 

  • Sayama M, Kurihara Y (1983) Relationship between burrowing activity of the polychaetous annelid, Neanthes japonica (Izuka) and nitrification-denitrification processes in the sediments. J Exp Mar Biol Ecol 72(3):233–241

    CAS  Google Scholar 

  • Soetaert K, Hofmann AF, Middelburg JJ, Meysman FJR, Greenwood J (2007) The effect of biogeochemical processes on pH. Mar Chem 105:30–51

    CAS  Google Scholar 

  • Sulpis O, Boudreau BP, Mucci A, Jenkins C, Trossman DS, Arbic BK, Key RM (2010) Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc Natl Acad Sci USA 115(46):11700–11705

    Google Scholar 

  • Sultana R, Casareto BE, Sohrin R, Suzuki T, Alam MS, Fujimura H et al (2016) Response of subtropical coastal sediment systems of Okinawa, Japan, to experimental warming and high pCO2. Front Mar Sci 3:100. https://doi.org/10.3389/fmars.2016.00100

    Article  Google Scholar 

  • Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 23:5115–5129

    Google Scholar 

  • Thamdrup B, Hansen JW, Jørgensen BB (1998) Temperature dependence of oxygen respiration in a temperate coastal sediment. FEMS Microbiol Ecol 25:189–200

    CAS  Google Scholar 

  • Trnovsky D, Stoltenberg L, Cyronak T, Eyre BD (2016) Antagonistic effects of ocean acidification and rising sea surface temperature on the dissolution of coral reef carbonate sediments. Front Mar Sci 3:211

    Google Scholar 

  • Ullman WJ, Aller RC (1982) Diffusion coefficients in nearshore marine sediments. Limnol Oceanogr 27(3):552–556

    CAS  Google Scholar 

  • van de Velde S, Meysman FJR (2016) The influence of bioturbation on iron and sulphur cycling in marine sediments: a model analysis. Aquat Geochem 22(5–6):469–504

    Google Scholar 

  • Vopel K, Vopel A, Thistle D, Hancock N (2007) Effects of spatangoid heart urchins on O2 supply into coastal sediment. Mar Ecol Prog Ser 333:161–171

    CAS  Google Scholar 

  • Vopel K, Del-Río C, Pilditch CA (2018) Effects of CO2 enrichment on benthic primary production and inorganic nitrogen fluxes in two coastal sediments. Sci Rep 8:1035

    PubMed  PubMed Central  Google Scholar 

  • Waldbusser GG, Hales B, Haley BA (2016) Calcium carbonate saturation state: on myths and this and that stories. ICES J Mar Sci 73(3):563–568

    Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    CAS  PubMed  Google Scholar 

  • Wenzhöfer F, Adler M, Kohls O, Hensen C, Strotmann B, Boehme S, Schulz HD (2001) Calcite dissolution driven by benthic mineralization in the deep-sea: in situ measurements of Ca2+,pH, pCO2 and O2. Geochim Cosmochim Acta 65:2677–2690

    Google Scholar 

  • Widdicombe S, Dashfield SL, McNeill CL, Needham HR, Beesley A, McEvoy A et al (2009) Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Mar Ecol Prog Ser 379:59–75

    CAS  Google Scholar 

  • Widdicombe S, Beesley A, Berge JA, Dashfield SL, McNeill CL, Needham HR, Øxnevad S (2013) Impact of elevated levels of CO2 on animal mediated ecosystem functions: The modification of sediment nutrient fluxes by burrowing urchins. Mar Poll Bull 73:416–427

    CAS  Google Scholar 

  • Wood HL, Widdicombe S, Spicer JI (2009) The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux – will ocean acidification affect nutrient exchange? Biogeosciences 6:2015–2024

    CAS  Google Scholar 

  • Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the metabolic balance of ecosystems. Philo Trans R Soc Lond B Biol Sci 365:2117–2126

    Google Scholar 

Download references

Acknowledgements

Wenshi Gong, Evan Brown, Ruth Auapaau and Tanayaz Patel assisted in the field and the laboratory. Kim Currie analysed the seawater dissolved inorganic carbon content and total alkalinity.

Funding

This study was funded by the New Zealand Ministry of Business, Innovation and Employment (contract UOWX1602).

Author information

Authors and Affiliations

Authors

Contributions

KV conceived the experiment. KV and BL performed the experiment. KV and CAP analysed the data. KV wrote the paper with assistance from CAP and CC.

Corresponding author

Correspondence to Kay Vopel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vopel, K., Laverock, B., Cary, C. et al. Effects of warming and CO2 enrichment on O2 consumption, porewater oxygenation and pH of subtidal silt sediment. Aquat Sci 83, 8 (2021). https://doi.org/10.1007/s00027-020-00765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-020-00765-5

Keywords

Navigation