Skip to main content
Log in

Polynomization of the Bessenrodt–Ono Type Inequalities for A-Partition Functions

  • Original Paper
  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

For an arbitrary set or multiset A of positive integers, we associate the A-partition function \(p_A(n)\) (that is the number of partitions of n whose parts belong to A). We also consider the analogue of the k-colored partition function, namely, \(p_{A,-k}(n)\). Further, we define a family of polynomials \(f_{A,n}(x)\) which satisfy the equality \(f_{A,n}(k)=p_{A,-k}(n)\) for all \(n\in \mathbb {Z}_{\ge 0}\) and \(k\in \mathbb {N}\). This paper concerns a polynomialization of the Bessenrodt–Ono inequality, namely

$$\begin{aligned} f_{A,a}(x)f_{A,b}(x)>f_{A,a+b}(x), \end{aligned}$$

where ab are positive integers. We determine efficient criteria for the solutions of this inequality. Moreover, we also investigate a few basic properties related to both functions \(f_{A,n}(x)\) and \(f_{A,n}'(x)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data will be made available on a reasonable request.

References

  1. A. K. Agarwal, Padmavathamma, M. V. Subbarao, Partition Theory, Atma Ram and Sons, Chandigarh, (2005).

  2. A. A. Alanazi, S.M. Gagola III, A. O. Munagi, Combinatorial proof of a partition inequality of Bessenrodt-Ono, Ann. Comb. 21 (2017), 331–337.

    Article  MathSciNet  Google Scholar 

  3. G. Almkvist, Partitions with parts in a finite set and with parts outside a finite set, Experiment. Math. 11 (2002), 449–456.

    Article  MathSciNet  Google Scholar 

  4. G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and Its Applications Series, Addison-Wesley, New York (1976), reissued, Cambridge University Press, New York (1998).

    Google Scholar 

  5. G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge University Press, Cambridge, 2004.

    Book  Google Scholar 

  6. M. Beck, I. M. Gessel, T. Komatsu, The polynomial part of a restricted partition function related to the Frobenius problem, Electronic J. Comb. 8 (2001), \(\#\)N7, 1–5.

  7. O. Beckwith, C. Bessenrodt, Multiplicative properties of the number of k-regular partitions, Ann. Comb. 20 (2) (2016), 231–250.

    Article  MathSciNet  Google Scholar 

  8. E. T. Bell, Interpolated denumerants and Lambert series, Amer. J. Math. 65 (1943), 382–386.

    Article  MathSciNet  Google Scholar 

  9. C. Bessenrodt, K. Ono, Maximal multiplicative properties of partitions, Ann. Comb. 20 (1) (2016), 59–64. (21) (2021), 615-634.

  10. S. Chern, S. Fu, D. Tang, Some inequalities for \(k\)-colored partition functions, Ramanujan J. 46 (2018), 713–725.

    Article  MathSciNet  Google Scholar 

  11. M. Cimpoeaş, F. Nicolae, On the restricted partition function, Ramanujan J. 47 (2018), 565–588.

    Article  MathSciNet  Google Scholar 

  12. S. Corteel, J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), 1623–1635.

    Article  MathSciNet  Google Scholar 

  13. M. L. Dawsey, R. Masri, Effective bounds for the Andrews spt-function, Forum Math. 31 (3) (2019), 743–767.

    Article  MathSciNet  Google Scholar 

  14. K. Dilcher, C. Vignat, An explicit form of the polynomial part of a restricted partition function, Res. Number Theory 3 (2017), #1.

  15. K. Gajdzica, A note on the restricted partition function \(p_{\cal{A}}(n,k)\), Discrete Math. 345 (2022), 112943.

    Article  MathSciNet  Google Scholar 

  16. K. Gajdzica, Log-concavity of the restricted partition function \(p_{\cal{A}}(n,k)\) and the new Bessenrodt–Ono type inequality, J. Number Theory 251 (2023), 31–65.

  17. F. Gawron, M. Ulas, Sign behaviour of sums of weighted numbers of partitions, Ramanujan J. 60 (2023), 571–584.

    Article  MathSciNet  Google Scholar 

  18. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Co., New York, 1994.

    Google Scholar 

  19. B. Heim, F. Luca, M. Neuhauser, On cyclotomic factors of polynomials related to modular forms, Ramanujan J. 48 (2019), 445–458.

    Article  MathSciNet  Google Scholar 

  20. B. Heim, M. Neuhauser, Polynomials related to powers of the Dedekind eta function, Integers 18 (2018), #A97.

  21. B. Heim, M. Neuhauser, Proof of the Bessenrodt–Ono inequality by induction, Res. Number Theory 8 (2022), #3.

  22. B. Heim, M. Neuhauser, R. Tröger, Polynomization of the Bessenrodt–Ono inequality, Ann. Comb. 24 (2020), 697–709.

    Article  MathSciNet  Google Scholar 

  23. B. Heim, M. Neuhauser, R. Tröger, Inequalities for plane partitions, Ann. Comb. 27 (2023), 87–108.

    Article  MathSciNet  Google Scholar 

  24. M. D. Hirschhorn, The power of \(q\): A Personal Journey, Developments in Mathematics, Vol. 49, Springer, 2017.

  25. E. Hou, M. Jagadeesan, Dyson’s partition ranks and their multiplicative extension, Ramanujan J. 45 (3) (2018), 817–839.

    Article  MathSciNet  Google Scholar 

  26. C. Krattenthaler, Plane partitions in the work of Richard Stanley and his school, “The Mathematical Legacy of Richard P. Stanley”, P. Hersh, T. Lam, P. Pylyavskyy, and V. Reiner (eds.), Amer. Math. Soc., R. I., (2016), 246–277.

  27. D. H. Lehmer, On the remainders and convergence of the series for the partition function, Transl. Am. Math. Soc. 46 (1939), 362–373.

    Article  MathSciNet  Google Scholar 

  28. X. Li, Polynomization of the Liu–Zhang inequality for the overpartition function, Ramanujan J. 62 (2023), 797–817.

    Article  MathSciNet  Google Scholar 

  29. J. Males, Asymptotic equidistribution and convexity for partition ranks, Ramanujan J. 54 (2) (2021), 397–413.

    Article  MathSciNet  Google Scholar 

  30. M. Newman, An identity for the coefficients of certain modular forms, J. London Math. Soc. 30 (1955), 488-493.

    Article  MathSciNet  Google Scholar 

  31. K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics 102 (2003).

  32. H. Rademacher, A convergent series for the partition function \(p(n)\), Proc. Natl. Acad. Sci. USA 23 (1937), 78–84.

    Article  Google Scholar 

  33. Ø. J. Rødseth, J. A. Sellers, Partitions with parts in a finite set, Int. J. Number Theory 2 (3) (2006), 455–468.

    Article  MathSciNet  Google Scholar 

  34. A. V. Sills, An invitation to the Rogers–Ramanujan identities, With a foreword by George E. Andrews CRC Press, Boca Raton, FL, 2018.

    Google Scholar 

  35. R. P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62 Cambridge University Press, Cambridge. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin (1999).

  36. S. Tengely, M. Ulas, Equal values of certain partition functions via Diophantine equations, Res. Number Theory 7 (2021), #67.

  37. M. Ulas, B. Żmija, On arithmetic properties of binary partition polynomials, Adv. Appl. Math. 110 (2019), 153–179.

    Article  MathSciNet  Google Scholar 

  38. Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL, 2018.

Download references

Acknowledgements

The first author would like to thank Piotr Miska, Maciej Ulas, and Błażej Żmija for their valuable comments and helpful suggestions. His research was funded by a grant of the National Science Centre (NCN), Poland, no. UMO-2019/34/E/ST1/00094. Finally, we thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Gajdzica.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Ken Ono

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajdzica, K., Heim, B. & Neuhauser, M. Polynomization of the Bessenrodt–Ono Type Inequalities for A-Partition Functions. Ann. Comb. (2024). https://doi.org/10.1007/s00026-024-00692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00026-024-00692-4

Keywords

Mathematics Subject Classification

Navigation