Skip to main content
Log in

A Murnaghan–Nakayama Rule for Grothendieck Polynomials of Grassmannian Type

  • Original Paper
  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We consider the Grothendieck polynomials appearing in the K-theory of Grassmannians, which are analogs of Schur polynomials. This paper aims to establish a version of the Murnaghan–Nakayama rule for Grothendieck polynomials of the Grassmannian type. This rule allows us to express the product of a Grothendieck polynomial with a power-sum symmetric polynomial into a linear combination of other Grothendieck polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

The manuscript has no external data. Everything can be found in my manuscript.

References

  1. Sami H. Assaf and Peter R. W. McNamara. A Pieri rule for skew shapes. Journal of Combinatorial Theory - Series A, 118(1), 2011.

  2. Jason Bandlow, Anne Schilling, and Mike Zabrocki. The Murnaghan-Nakayama rule for \(k\)-Schur functions. Journal of Combinatorial Theory, Series A, 118(5):1588–1607, 2011.

    Article  MathSciNet  Google Scholar 

  3. Anders S. Buch. A Littlewood-Richardson rule for the \(K\)-theory of Grassmannians. Acta Mathematica, 189(1):37–78, 2002.

    Article  MathSciNet  Google Scholar 

  4. Michel Demazure. Désingularisation des variétés de Schubert généralisées. In Annales scientifiques de l’École normale supérieure, volume 7, pages 53–88, 1974.

    Article  Google Scholar 

  5. Sergey Fomin and Curtis Green. Noncommutative Schur functions and their applications. Discrete Mathematics, 193(1-3):179–200, 1998.

    Article  MathSciNet  Google Scholar 

  6. Sergey Fomin and Anatol N Kirillov. Grothendieck polynomials and the Yang-Baxter equation. In Proc. Formal Power Series and Alg. Comb, pages 183–190, 1994.

  7. Sergey Fomin and Anatol N Kirillov. The Yang-Baxter equation, symmetric functions, and Schubert polynomials. Discrete Mathematics, 153(1-3):123–143, 1996.

    Article  MathSciNet  Google Scholar 

  8. Francesco Gherardelli. Invariant theory: proceedings of the 1st 1982 Session of the Centro Internazionale Matematico Estivo (CIME) held at Montecatini, Italy, June 10-18, 1982, volume 996. Springer, 2006.

  9. Takeshi Ikeda and Hiroshi Naruse. K-theoretic analogues of factorial Schur P- and Q-functions. Advances in Mathematics, 243:22–66, 2013.

    Article  MathSciNet  Google Scholar 

  10. Takeshi Ikeda and Tatsushi Shimazaki. A proof of K-theoretic Littlewood-Richardson rules by Bender-Knuth-type involutions. Mathematical Research Letters, 21(2):333–339, 2014.

    Article  MathSciNet  Google Scholar 

  11. Anatol N. Kirillov. On some quadratic algebras I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials. SIGMA Symmetry, Integrability and Geometry: Methods and Applications 12:002, 2016.

    MathSciNet  Google Scholar 

  12. Bertram Kostant and Shrawan Kumar. \(T\)-equivariant \(K\)-theory of generalized flag varieties. Proceedings of the National Academy of Sciences, 84(13):4351–4354, 1987.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Matjaž Konvalinka. Skew quantum Murnaghan-Nakayama rule. Journal of Algebraic Combinatorics, 35(4):519–545, 2012.

    Article  MathSciNet  Google Scholar 

  14. Alain Lascoux. Anneau de Grothendieck de la variété de drapeaux. In The Grothendieck Festschrift, pages 1–34. Springer, 2007.

  15. Cristian Lenart. Combinatorial aspects of the \(K\)-theory of Grassmannians. Annals of Combinatorics, 4(1):67–82, 2000.

  16. Alain Lascoux and Marcel-Paul Schützenberger. Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux. CR Acad Sci Paris Sér I Math, 295(11):629–633, 1982.

    Google Scholar 

  17. Ian G. Macdonald. Notes on Schubert polynomials, volume 6. Dép. de mathématique et d’informatique, Université du Québec à Montréal, 1991.

  18. Ian G. Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.

    Google Scholar 

  19. Andrew Morrison and Frank Sottile. Two Murnaghan-Nakayama rules in Schubert calculus. Annals of Combinatorics, 22(2):363–375, 2018.

    Article  MathSciNet  Google Scholar 

  20. Francis D Murnaghan. The characters of the symmetric group. American Journal of Mathematics, 59(4):739–753, 1937.

    Article  MathSciNet  Google Scholar 

  21. Tadasi Nakayama. On some modular properties of irreducible representations of a symmetric group, I. In Japanese journal of mathematics: transactions and abstracts, volume 17, pages 165–184. The Mathematical Society of Japan, 1940.

  22. Tadasi Nakayama. On some modular properties of irreducible representations of symmetric groups, II. In Japanese journal of mathematics: transactions and abstracts, volume 17, pages 411–423. The Mathematical Society of Japan, 1940.

  23. Dustin Ross. The loop Murnaghan-Nakayama rule. Journal of Algebraic Combinatorics, 39(1):3–15, 2014.

    Article  MathSciNet  Google Scholar 

  24. Dustin Ross and Zhengyu Zong. The gerby Gopakumar-Mariño-Vafa formula. Geometry & Topology, 17(5):2935–2976, 2013.

    Article  MathSciNet  Google Scholar 

  25. Vasu Tewari. A Murnaghan-Nakayama rule for noncommutative Schur functions. European Journal of Combinatorics, 58:118–143, 2016.

    Article  MathSciNet  Google Scholar 

  26. Mark Wildon. A combinatorial proof of a plethystic Murnaghan-Nakayama rule. SIAM Journal on Discrete Mathematics, 30(3):1526–1533, 2016.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Education and Training, Vietnam, under project code B2022-CTT-02: “Study some combinatorial models in Representation Theory”, 2022-2023 (Decision No.1323/QD-BGDDT, May 19, 2022). Khanh would like to express his sincere gratitude for the Visiting Fellowship supported by MathCoRe and Prof. Petra Schwer at Otto-von-Guericke-Universität Magdeburg. He would also like to thank Prof. Cristian Lenart for his strong encouragement and for taking his time to read the manuscript and give valuable comments. Hiep would like to thank Prof. Takeshi Ikeda for introducing Grothendieck polynomials and explaining their importance in the study of K-theory of Grassmannians. Thuy was partially supported by the Vietnam Academy of Science and Technology under grant number DLTE00.04/23-24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Khanh Nguyen.

Ethics declarations

Conflict of Interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Matjaž Konvalinka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, DK., Hiep, D.T., Son, T.H. et al. A Murnaghan–Nakayama Rule for Grothendieck Polynomials of Grassmannian Type. Ann. Comb. 28, 155–168 (2024). https://doi.org/10.1007/s00026-023-00659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-023-00659-x

Keywords

Mathematics Subject Classification

Navigation