Skip to main content
Log in

Noncommutative Catalan Numbers

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

The goal of this paper is to introduce and study noncommutative Catalan numbers\(C_n\) which belong to the free Laurent polynomial algebra \(\mathcal {L}_n\) in n generators. Our noncommutative numbers admit interesting (commutative and noncommutative) specializations, one of them related to Garsia–Haiman (qt)-versions, another—to solving noncommutative quadratic equations. We also establish total positivity of the corresponding (noncommutative) Hankel matrices \(H_n\) and introduce accompanying noncommutative binomial coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aigner, M.: Catalan-like numbers and determinants. J. Combin. Theory Ser. A 87(1), 33–51 (1999)

    Article  MathSciNet  Google Scholar 

  2. Andrews, G.: Catalan numbers, \(q\)-Catalan numbers and hypergeometric series. J. Combin. Theory Ser. A 44(2), 267–273 (1987)

    Article  MathSciNet  Google Scholar 

  3. Berenstein, A., Retakh, V.: A short proof of Kontsevich’s cluster conjecture. C. R. Math. Acad. Sci. Paris 349(3-4), 119–122 (2011)

    Article  MathSciNet  Google Scholar 

  4. Berenstein, A., Retakh, V.: Noncommutative marked surfaces. Adv. Math. 328, 1010–1087 (2018)

    Article  MathSciNet  Google Scholar 

  5. Berenstein, A., Retakh, V., Reutenauer, C., Zeilberger, D.: The reciprocal of \(\sum _{n\ge 0}a^nb^n\) for non-commuting \(a\) and \(b\), Catalan numbers and non-commutative quadratic equations. In: Berenstein, A., Retakh, V. (eds.) Noncommutative birational geometry, representations and combinatorics, Contemp. Math., 592, pp. 103–109. Amer. Math. Soc., Providence, RI (2013)

  6. Carlitz, L.: Sequences, paths, ballot numbers. Fibonacci Quart. 10(5), 531–549 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Carlitz, L., Riordan, J.: Two element lattice permutation numbers and their \(q\)-generalization. Duke Math. J. 31, 371–388 (1964)

    Article  MathSciNet  Google Scholar 

  8. Di Francesco, Ph., Kedem, R.: Non-commutative integrability, paths and quasi-determinants. Adv. Math. 228(1), 97–152 (2011)

    Article  MathSciNet  Google Scholar 

  9. Fürlinger, J., Hofbauer, J.: \(q\)-Catalan numbers. J. Combin. Theory Ser. A 40(2), 248–264 (1985)

    Article  MathSciNet  Google Scholar 

  10. Garsia, A.M., Haiman, M.: A remarkable \(q,t\)-Catalan sequence and \(q\)-Lagrange inversion. J. Algebraic Combin. 5(3), 191–244 (1996)

    Article  MathSciNet  Google Scholar 

  11. Garsia, A.M., Haglund, J.: A proof of the \(q,t\)-Catalan positivity conjecture. Discrete Math. 256(3), 677–717 (2002)

    Article  MathSciNet  Google Scholar 

  12. Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)

    Article  MathSciNet  Google Scholar 

  13. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218–348 (1995)

    Article  MathSciNet  Google Scholar 

  14. Gelfand, I.M., Retakh, V.S.: Theory of noncommutative determinants, and characteristic functions of graphs. Funct. Anal. Appl. 26(4), 231–246 (1992)

    Article  MathSciNet  Google Scholar 

  15. Gelfand, I.M., Retakh, V.S.: Determinants of matrices over noncommutative rings. Funct. Anal. Appl. 25(2), 91–102 (1991)

    Article  MathSciNet  Google Scholar 

  16. Haglund, J.: The \(q,t\)-Catalan Numbers and the Space of Diagonal Harmonics. With an appendix on the combinatorics of Macdonald polynomials. University Lecture Series, 41. Amer. Math. Soc. Providence, RI (2008)

  17. Pak, I., Postnikov, A., Retakh, V.: Noncommutative Lagrange theorem and inversion polynomials. (preprint) https://math.mit.edu/~apost/papers/noncom.pdf

  18. Stanley, R.P.: Catalan Numbers. Cambridge University Press, New York (2015)

    Book  Google Scholar 

  19. Tamm, U.: Some aspects of Hankel matrices in coding theory and combinatorics. Electron. J. Combin. 8(1), Art. 1, 31 pp (2001)

Download references

Acknowledgements

This work was partly done during our visits to Max-Planck-Institut für Mathematik and Institut des Hautes Études Scientifiques. We gratefully acknowledge the support of these institutions. We thank Philippe Di Francesco and Rinat Kedem for their comments on the first version of the paper, particularly for explaining to us a relationship between noncommutative Stieltjes continued fractions and our noncommutative Catalan series (see Remark 2.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Retakh.

Additional information

Dedicated to Professor George Andrews on the occasion of his eightieth birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the NSF Grant DMS-1403527 (A. B.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berenstein, A., Retakh, V. Noncommutative Catalan Numbers. Ann. Comb. 23, 527–547 (2019). https://doi.org/10.1007/s00026-019-00473-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-019-00473-4

Keywords

Mathematics Subject Classification

Navigation