Skip to main content
Log in

On the Distribution of the Number of Fixed Vectors for the Finite Classical Groups

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Motivated by analogous results for the symmetric group and compact Lie groups, we study the distribution of the number of fixed vectors of a random element of a finite classical group. We determine the limiting moments of these distributions, and find exactly how large the rank of the group has to be in order for the moment to stabilize to its limiting value. The proofs require a subtle use of some q-series identities. We also point out connections with orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.: The Theory of Partitions. Encyclopedia Math. Appl., Vol. 2. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam (1976)

  2. Bressoud D.: Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  3. Chihara T.: An Introduction to Orthogonal Polynomials. Gordon and Breach Science Publishers, New York-London-Paris (1978)

    MATH  Google Scholar 

  4. Christiansen, J.: Indeterminate moment problems within the Askey-scheme. Ph.D thesis, University of Copenhagen, Copenhagen (2004)

  5. Church, T., Ellenberg, J., Farb, B.: Representation stability in cohomology and asymptotics for families of varieties over finite fields. In: Tillmann, U., Galatius, S., Sinha, D. (eds.) Algebraic Topology: Applications and New Directions. Contemp. Math., 620, pp. 1–54. Amer. Math. Soc., Providence, RI (2014)

  6. Diaconis P., Evans S.: Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353(7), 2615–2633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaconis P., Shahshahani M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Egawa Y.: Association schemes of quadratic forms. J. Combin. Theory Ser. A 38(1), 1–14 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulman, J.: Probability in the classical groups over finite fields. Ph.D thesis, Harvard University, Cambridge (1997)

  10. Fulman J.: A probabilistic approach toward conjugacy classes in the finite general linear and unitary groups. J. Algebra 212(2), 557–590 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fulman J.: A probabilistic approach to conjugacy classes in the finite symplectic and orthogonal groups. J. Algebra 234(1), 207–224 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fulman J., Guralnick R.: Conjugacy class properties of the extension of GL(n, q) generated by the inverse transpose involution. J. Algebra 275(1), 356–396 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fulman J., Saxl J., Tiep P.H.: Cycle indices for finite orthogonal groups of even characteristic. Trans. Amer. Math. Soc. 364(5), 2539–2566 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gasper G., Rahman M.: Basic Hypergeometric Series. Second edition. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Goldman, J., Rota, G.-C.: The number of subspaces of a vector space. In: Tutte, W.T. (ed.) Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics), pp. 75–83. Academic Press, New York (1969)

  16. Johansson K.: On random matrices from the compact classical groups. Ann. of Math. 145(3), 519–545 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Malle G.: On the distribution of class groups of number fields. Experiment. Math. 19(4), 465–474 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Medicis A., Stanton D., White D.: The combinatorics of q-Charlier polynomials. J. Combin. Theory Ser. A 69(1), 87–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pastur L., Vasilchuk V.: On the moments of traces of matrices of classical groups. Comm. Math. Phys. 252(1-3), 149–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rains, E.: Increasing subsequences and the classical groups. Electron. J. Combin. 5, #R12 (1998)

  21. Rudvalis, A., Shinoda, K.: An enumeration in finite classical groups. U-Mass Amherst Department of Mathematics Technical Report, Amherst, MA (1988)

  22. Stolz M.: On the Diaconis-Shahshahani method in random matrix theory. J. Algebraic Combin. 22(4), 471–491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Washington L.: Some remarks on Cohen-Lenstra heuristics. Math. Comp. 47(176), 741–747 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Stanton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulman, J., Stanton, D. On the Distribution of the Number of Fixed Vectors for the Finite Classical Groups. Ann. Comb. 20, 755–773 (2016). https://doi.org/10.1007/s00026-016-0336-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-016-0336-7

Mathematics Subject Classification

Keywords

Navigation