Skip to main content
Log in

On Extension of Norm-Additive Maps Between the Positive Unit Spheres of \(\ell _q(\ell _p)\)

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the extension problems of norm-additive maps between the positive unit spheres of \(\ell _q(\ell _p)\), \(1\le p,q\le \infty \). Let \(S_{\ell _q(\ell _p)}^+=\{x\in \ell _q(\ell _p): x\ge 0;\Vert x\Vert =1\}\) be the positive unit sphere of \(\ell _q(\ell _p)\), \(f:S_{\ell _q(\ell _p)}^+\rightarrow S_{\ell _q(\ell _p)}^+\) be a bijective norm-additive map (preserving norm of sums), i.e.,

$$\begin{aligned} \Vert f(x)+f(y)\Vert =\Vert x+y\Vert ,\;\mathrm{for\;all\;}x,y\in S_{\ell _q(\ell _p)}^+. \end{aligned}$$

In the cases when \(1<p,q\le \infty \) or \(1<p<\infty ,\;q=1\), we show that f can be extended to a linear surjective isometry from \(\ell _q(\ell _p)\) onto itself. Counter examples for the remaining cases when \(p=1,\;1\le q\le \infty \) or \(p=\infty ,\;q=1\) are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

The data used to support the findings of this study are included within the article.

References

  1. Chen, L., Dong, Y., Zheng, B.: On norm-additive maps between the maximal groups of positive continuous functions. Results Math. 74, 152 (2019)

    Article  MathSciNet  Google Scholar 

  2. Cheng, L., Dong, Y.: On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces. J. Math. Anal. Appl. 377, 464–470 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ding, G.: On isometric extension problem between two unit spheres. Sci. China Ser. A 52, 2069–2083 (2009)

    Article  MathSciNet  Google Scholar 

  4. Ding, G., Li, J.: Isometries between unit spheres of the \(\ell _\infty \)-sum of strictly convex normed spaces. Bull. Aust. Math. Soc. 88, 369–375 (2013)

    Article  MathSciNet  Google Scholar 

  5. Dong, Y., Li, L., Molnár, L., Wong, N.C.: Transformations preserving the norm of means between positive cones of general and commutative \(C^*\)-algebras. J. Operator Theory 88, 365–406 (2022)

    MathSciNet  Google Scholar 

  6. Fernández-Polo, F.J., Garcés, J.J., Peralta, A.M., Villanueva, I.: Tingley’s problem for spaces of trace class operators. Linear Algebra Appl. 529, 294–323 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fernández-Polo, F.J., Peralta, A.M.: Tingley’s problem through the facial structure of an atomic \(JBW^\ast \)-triple. J. Math. Anal. Appl. 455, 750–760 (2017)

    Article  MathSciNet  Google Scholar 

  8. Fernández-Polo, F.J., Peralta, A.M.: On the extension of isometries between the unit spheres of a \(C^\ast \)-algebra and \(B(H)\). Trans. Am. Math. Soc. Ser. B 5, 63–80 (2018)

    Article  MathSciNet  Google Scholar 

  9. Fernández-Polo, F.J., Peralta, A.M.: On the extension of isometries between the unit spheres of von Neumann algebras. J. Math. Anal. Appl. 466, 127–143 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fernández-Polo, F.J., Peralta, A.M.: Low rank compact operators and Tingley’s problem. Adv. Math. 338, 1–40 (2018)

    Article  MathSciNet  Google Scholar 

  11. Gaál, M.: Norm-addtive maps on the positive definite cone of a \(C^\ast \)-algebra. Results Math. 73, 151 (2018)

    Article  Google Scholar 

  12. Guerrero, J.B.: The Mazur-Ulam property in \(\ell _\infty \)-sum and \(c_0\)-sum of strictly convex Banach spaces. J. Math. Anal. Appl. 489, 124166 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hao, J., Dong, Y., Li, L.: Maps preserving the norm of the positive sum in \(L^p\) spaces. Acta Math. Sci. 42, 789–794 (2022)

    Article  Google Scholar 

  14. Hosseini, M., Font, J.J.: Real-linear isometries and jointly norm-additive maps on function algebras. Mediterr. J. Math. 13, 1933–1948 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kadets, V., Martín, M.: Extension of isometries between unit spheres of infite-dimensional polyhedral Banach spaces. J. Math. Anal. Appl. 396, 441–447 (2012)

    Article  MathSciNet  Google Scholar 

  16. Lau, A.T.M., Ng, C.K., Wong, N.C.: Normal states are determined by their facial distances. Bull. Lond. Math. Soc. 52(3), 505–514 (2020)

    Article  MathSciNet  Google Scholar 

  17. Leung, C.W., Ng, C.K., Wong, N.C.: Transition probabilities of normal states determine the Jordan structure of a quantum system. J. Math. Phys. 57, 015212 (2016)

    Article  MathSciNet  Google Scholar 

  18. Leung, C.W., Ng, C.K., Wong, N.C.: On a variant of Tingley’s problem for some function spaces. J. Math. Anal. Appl. 496, 124800 (2021)

    Article  MathSciNet  Google Scholar 

  19. Li, L.: Isometries on the unit spheres of the \(\ell _1\)-sum of strictly convex normed spaces. Ann. Funct. Anal. 7, 33–41 (2016)

    Article  MathSciNet  Google Scholar 

  20. Liu, R.: On extension of isometries between unit spheres of \(L^\infty (\Gamma )\)-type space and a Banach space \(E\). J. Math. Anal. Appl. 333, 959–970 (2007)

    Article  MathSciNet  Google Scholar 

  21. Mazur, S., Ulam, S.: Sur les transformations isométriques d’espaces vectoriels normés. C.R. Acad. Sci. Paris 194, 946–948 (1932)

  22. Molnár, L., Nagy, G.: Isometries and relative entropy preserving maps on density operators. Linear Multilinear Algebra 60, 93–108 (2012)

    Article  MathSciNet  Google Scholar 

  23. Molnár, L., Timmermann, W.: Isometries of quantum states. J. Phys. A Math. Gen. 36, 267–273 (2003)

    Article  MathSciNet  Google Scholar 

  24. Molnár, L.: Spectral characterization of Jordan-Segal isomorphisms of quantum observables. J. Operator Theory 83, 179–195 (2020)

    Article  MathSciNet  Google Scholar 

  25. Mori, M.: Tingley’s problem through the facial structure of operator algebras. J. Math. Anal. Appl. 266, 1281–1298 (2018)

    Article  MathSciNet  Google Scholar 

  26. Nagy, G.: Isometries on positive operators of unit norm. Publ. Math. (Debr.) 82, 183–192 (2013)

    Article  MathSciNet  Google Scholar 

  27. Nagy, G.: Isometries of spaces of normalized positive operators under the operator norm. Publ. Math. (Debr.) 92(1–2), 243–254 (2018)

    Article  MathSciNet  Google Scholar 

  28. Peralta, A.M.: A survey on Tingley’s problem for operator algebras. Acta Sci. Math. 84(1–2), 81–123 (2018)

    Article  MathSciNet  Google Scholar 

  29. Peralta, A.M.: On the unit sphere of positive operators. Banach J. Math. Anal. 13(1), 91–112 (2019)

    Article  MathSciNet  Google Scholar 

  30. Peralta, A.M., Tanaka, R.: A solution to Tingley’s problem for isometries between the unit spheres of compact \(C^\ast \)-algebras and \(JB^\ast \)-triples. Sci. China Math. 62, 553–568 (2019)

    Article  MathSciNet  Google Scholar 

  31. Tan, D.: Extension of isometries on unit sphere of \(L^\infty \). Taiwanese J. Math. 15, 819–827 (2011)

    Article  MathSciNet  Google Scholar 

  32. Tan, D.: On extension of isometries on the unit spheres of \(L^p\)-spaces for \(0<p\le 1\). Nonlinear Anal. 74, 6981–6987 (2011)

    Article  MathSciNet  Google Scholar 

  33. Tan, D.: Extension of isometries on the unit sphere of \(L^p\)-spaces. Acta. Math. Sin. 28, 1197–1208 (2012)

    Article  MathSciNet  Google Scholar 

  34. Tanaka, R.: Tingley’s problem on finite von Neumann algebras. J. Math. Anal. Appl. 451, 319–326 (2017)

    Article  MathSciNet  Google Scholar 

  35. Tingley, D.: Isometries of the unit sphere. Geom. Dedicata 22, 371–378 (1987)

    Article  MathSciNet  Google Scholar 

  36. Tonev, T., Yates, R.: Norm-linear and norm-additive operators between uniform algebras. J. Math. Anal. Appl. 357, 45–53 (2009)

    Article  MathSciNet  Google Scholar 

  37. Wang, R.: Isometries between the unit spheres of \(C_0(\Omega )\) type spaces. Acta Math. Sci. 14(1), 82–89 (1994)

    Article  MathSciNet  Google Scholar 

  38. Zhang, J., Tsai, M.-C., Wong, N.-C.: Norm of positive sum preservers of smooth Banach lattices and \(L^p(\mu )\) spaces. J. Nonlinear Convex Anal. 20, 2613–2621 (2019)

    MathSciNet  Google Scholar 

  39. Zhang, J., Tsai, M.-C., Wong, N.-C.: Norm of positive sum preservers of noncommutative \(L^p(M)\) spaces. J. Nonlinear Convex Anal. 22, 251–264 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee and the editor for their constructive comments and helpful suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfa Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Longfa Sun is supported by the National Natural Science Foundation of China ( Grant no. 12101234), the Natural Science Foundation of Hebei Province (Grant no. A2022502010), the Fundamental Research Funds for the Central Universities (Grant no. 2023MS164).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Sun, Y. On Extension of Norm-Additive Maps Between the Positive Unit Spheres of \(\ell _q(\ell _p)\). Results Math 79, 126 (2024). https://doi.org/10.1007/s00025-024-02154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-024-02154-y

Keywords

Mathematics Subject Classification

Navigation