Skip to main content
Log in

On the Connection Between the Fueter–Sce–Qian Theorem and the Generalized CK-Extension

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The Fueter–Sce–Qian theorem provides a way of inducing axial monogenic functions in \(\mathbb {R}^{m+1}\) from holomorphic intrinsic functions of one complex variable. This result was initially proved by Fueter and Sce for the cases where the dimension m is odd using pointwise differentiation, while the extension to the cases where m is even was proved by Qian using the corresponding Fourier multipliers. In this paper, we provide an alternative description of the Fueter–Sce–Qian theorem in terms of the generalized CK-extension. The latter characterizes axial null solutions of the Cauchy–Riemann operator in \(\mathbb {R}^{m+1}\) in terms of their restrictions to the real line. This leads to a one-to-one correspondence between the space of axially monogenic functions in \(\mathbb {R}^{m+1}\) and the space of analytic functions of one real variable. We provide explicit expressions for the Fueter–Sce–Qian map in terms of the generalized CK-extension for both cases, m even and m odd. These expressions allow for a plane wave decomposition of the Fueter–Sce–Qian map or, more in particular, a factorization of this mapping in terms of the dual Radon transform. In turn, this decomposition provides a new possibility for extending the Coherent State Transform (CST) to Clifford Analysis. In particular, we construct an axial CST defined through the Fueter–Sce–Qian mapping, and show how it is related to the axial and slice CST’s already studied in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Encyclopedia of Mathematics and its Applications, Vol. 71. Cambridge University Press, Cambridge (1999)

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory. Commun. Pure Appl. Math. 20, 1–101 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis, Volume 76 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston (1982)

  4. Cação, I., Falcão, M.I., Malonek, H.R.: Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Model. 53(5–6), 1084–1094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colombo, F., Lávička, R., Sabadini, I., Souček, V.: The Radon transform between monogenic and generalized slice monogenic functions. Math. Ann. 363(3–4), 733–752 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colombo, F., Sabadini, I.: A structure formula for slice monogenic functions and some of its consequences. In: Hypercomplex Analysis, Trends Math., pp. 101–114. Birkhäuser Verlag, Basel (2009)

  7. Colombo, F., Sabadini, I., Sommen, F.: The inverse Fueter mapping theorem. Commun. Pure Appl. Anal. 10(4), 1165–1181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colombo, F., Sabadini, I., Sommen, F.: The inverse Fueter mapping theorem in integral form using spherical monogenics. Israel J. Math. 194(1), 485–505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colombo, F., Sabadini, I., Struppa, D.C.: Slice monogenic functions. Israel J. Math. 171, 385–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colombo, F., Sabadini, I., Struppa, D.C.: An extension theorem for slice monogenic functions and some of its consequences. Israel J. Math. 177, 369–389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombo, F., Sabadini, I., Struppa, D.C.: Michele Sce’s Works in Hypercomplex Analysis—A Translation with Commentaries, p. 2020. Birkhäuser/Springer, Cham (2020)

    Book  MATH  Google Scholar 

  12. De Martino, A., Diki, K., Guzmán Adán, A.: The Fueter-Sce mapping and the Clifford-Appell polynomials, Preprint, 2023

  13. De Schepper, N., Sommen, F.: Cauchy–Kowalevski extensions and monogenic plane waves using spherical monogenics. Bull. Braz. Math. Soc. (N.S.) 44(2), 321–350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor-valued functions.In: A Function Theory for the Dirac operator, Vol. 53 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1992)

  15. Diki, K., Krausshar, R.S., Sabadini, I.: On the Bargmann–Fock–Fueter and Bergman–Fueter integral transforms. J. Math. Phys. 60(8), 083506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, B., Kou, K.I., Qian, T., Sabadini, I.: On the inversion of Fueter’s theorem. J. Geom. Phys. 108, 102–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eelbode, D.: The biaxial Fueter theorem. Israel J. Math. 201(1), 233–245 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fueter, R.: Die Funktionentheorie der Differentialgleichungen \(\Delta u=0\) und \(\Theta \Theta u=0\) mit vier reellen Variablen. Comment. Math. Helv. 7(1), 307–330 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilbert, J.E., Murray, M.A.M.: Clifford algebras and Dirac operators in harmonic analysis, Volume 26 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (1991)

  20. Gürlebeck, K., Habetha, K., Spröß ig, W.: Holomorphic functions in the plane and \(n\)-dimensional space. Birkhäuser Verlag, Basel (2008). Translated from the 2006 German original, With 1 CD-ROM (Windows and UNIX)

  21. Guzmán Adán, A.: Generalized Cauchy–Kovalevskaya extension and plane wave decompositions in superspace. Annali di Matematica Pura ed Applicata (1923) (2020). https://doi.org/10.1007/s10231-020-01043-9

  22. Hall, B.C.: The Segal–Bargmann “coherent state’’ transform for compact Lie groups. J. Funct. Anal. 122(1), 103–151 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Helgason, S.: Groups and geometric analysis, volume 113 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL (1984). Integral geometry, invariant differential operators, and spherical functions

  24. Kirwin, W.D., Mourão, J., Nunes, J.A.P., Qian, T.: Extending coherent state transforms to Clifford analysis. J. Math. Phys. 57(10), 103505 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kou, K.I., Qian, T., Sommen, F.: Generalizations of Fueter’s theorem. Methods Appl. Anal. 9(2), 273–289 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peña Peña, D.: Shifted Appell sequences in Clifford analysis. Results Math. 63(3–4), 1145–1157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peña Peña, D., Qian, T., Sommen, F.: An alternative proof of Fueter’s theorem. Complex Var. Elliptic Equ. 51(8–11), 913–922 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pena-Pena, D.: Cauchy–Kowalevski extensions, Fueter’s theorems and boundary values of special systems in Clifford analysis. Ph.D. dissertation, Ghent University (2008)

  29. Qian, T.: Generalization of Fueter’s result to \({\textbf{R} }^{n+1}\). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8(2), 111–117 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Sce, M.: Osservazioni sulle serie di potenze nei moduli quadratici. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 23, 220–225 (1957)

    MathSciNet  MATH  Google Scholar 

  31. Segal, I.E.: Mathematical characterization of the physical vacuum for a linear Bose-Einstein field. (Foundations of the dynamics of infinite systems. III). Illinois J. Math. 6, 500–523 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  32. Segal, I.E.: The complex-wave representation of the free boson field. In: Topics in Functional Analysis (Essays Dedicated to M. G. Kreĭn on the Occasion of his 70th Birthday), Vol. 3 of Adv. in Math. Suppl. Stud., pp 321–343. Academic Press, New York, London (1978)

  33. Sommen, F.: Plane wave decompositions of monogenic functions. Ann. Polon. Math. 49(1), 101–114 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sommen, F.: On a generalization of Fueter’s theorem. Z. Anal. Anwendungen 19(4), 899–902 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino De Martino.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Martino, A., Diki, K. & Adán, A.G. On the Connection Between the Fueter–Sce–Qian Theorem and the Generalized CK-Extension. Results Math 78, 55 (2023). https://doi.org/10.1007/s00025-022-01825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01825-y

Keywords

Mathematics Subject Classification

Navigation