Skip to main content
Log in

Normality Criteria for Monomial Ideals

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the normality of monomial ideals using linear programming and graph theory. We give normality criteria for monomial ideals, for ideals generated by monomials of degree two, and for edge ideals of graphs and clutters and their ideals of covers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Al-Ayyoub, I., Nasernejad, M., Roberts, L.G.: Normality of cover ideals of graphs and normality under some operations. Results Math. 74(4), 26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, S., Trotter, L.E.: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discret. Methods 2(4), 416–425 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brennan, J.P., Dupont, L.A., Villarreal, R.H.: Duality, a-invariants and canonical modules of rings arising from linear optimization problems. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51(4), 279–305 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz. Algorithms for Rational Cones and Affine Monoids. https://normaliz.uos.de

  5. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 74. SIAM (2001)

  6. Cox, D., Little, J., Schenck, H.: Toric Varieties, Graduate Studies in Mathematics 124. American Mathematical Society, Providence, RI (2011)

  7. Delfino, D., Taylor, A., Vasconcelos, W.V., Weininger, N., Villarreal, R.H.: Monomial Ideals and the Computation of Multiplicities, Commutative Ring Theory and Applications (Fez, 2001), Lect. Notes Pure Appl. Math. 231,: 87–106, p. 2003. Dekker, New York (2003)

  8. Dupont, L.A., Rentería, C., Villarreal, R.H.: Systems with the integer rounding property in normal monomial subrings. An. Acad. Brasil. Ciênc. 82(4), 801–811 (2010)

    Article  MathSciNet  Google Scholar 

  9. Dupont, L.A., Villarreal, R.H.: Edge ideals of clique clutters of comparability graphs and the normality of monomial ideals. Math. Scand. 106(1), 88–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escobar, C., Martínez-Bernal, J., Villarreal, R.H.: Relative volumes and minors in monomial subrings. Linear Algebra Appl. 374, 275–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escobar, C., Villarreal, R.H., Yoshino, Y.: Torsion freeness and normality of blowup rings of monomial ideals, Commutative Algebra. Lect. Notes Pure Appl. Math., Vol. 244. Chapman & Hall/CRC, Boca Raton, pp. 69–84 (2006)

  12. Francisco, C.A., Hà, H.T., Van Tuyl, A.: A conjecture on critical graphs and connections to the persistence of associated primes. Discret. Math. 310, 2176–2182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fulton, W.: Introduction to Toric Varieties. Princeton University Press (1993)

  14. Gilmer, R.: Commutative Semigroup Rings, Chicago Lectures in Math. Univ. of Chicago Press, Chicago (1984)

    Google Scholar 

  15. Gitler, I., Reyes, E., Villarreal, R.H.: Blowup algebras of square-free monomial ideals and some links to combinatorial optimization problems. Rocky Mount. J. Math. 39(1), 71–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gitler, I., Villarreal, R.H.: Graphs, Rings and Polyhedra, Aportaciones Mat. Textos, 35. Soc. Mat. Mexicana, México (2011)

  17. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd Ed., Annals of Discrete Mathematics, Vol. 57. Elsevier Science B.V, Amsterdam (2004)

  18. Grayson, D., Stillman, M.: Macaulay2 (1996). http://www.math.uiuc.edu/Macaulay2/

  19. Hà, H.T., Trung, N.V.: Membership criteria and containments of powers of monomial ideals. Acta Math. Vietnam. 44, 117–139 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hemmecke, R.: On the Computation of Hilbert Bases of Cones, Mathematical software (Beijing, 2002), pp. 307–317. World Sci. Publ, River Edge (2002)

  21. Herzog, J., Hibi, T.: Monomial Ideals, Graduate Texts in Mathematics, Vol. 260, Springer (2011)

  22. Huneke, C., Swanson, I.: Integral Closure of Ideals Rings, and Modules, London Math. Soc., Lecture Note Series, Vol. 336, Cambridge University Press, Cambridge (2006)

  23. Kaiser, T., Stehlík, M., Škrekovski, R.: Replication in critical graphs and the persistence of monomial ideals. J. Combin. Theory Ser. A 123(1), 239–251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martínez-Bernal, J., Morey, S., Villarreal, R.H.: Associated primes of powers of edge ideals. Collect. Math. 63(3), 361–374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schrijver, A.: On total dual integrality. Linear Algebra Appl. 38, 27–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  27. Schrijver, A.: Combinatorial Optimization, Algorithms and Combinatorics 24. Springer, Berlin (2003)

    Google Scholar 

  28. Simis, A., Vasconcelos, W.V., Villarreal, R.H.: On the ideal theory of graphs. J. Algebra 167, 389–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vasconcelos, W.V.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer (1998)

  30. Vasconcelos, W.V.: Integral Closure, Springer Monographs in Mathematics. Springer, New York (2005)

  31. Villarreal, R.H.: Normality of subrings generated by square free monomials. J. Pure Appl. Algebra 113, 91–106 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Villarreal, R.H.: Rees algebras and polyhedral cones of ideals of vertex covers of perfect graphs. J. Algebraic Combin. 27, 293–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Villarreal, R.H.: Monomial Algebras, 2nd edn. Monographs and Research Notes in Mathematics. Chapman and Hall/CRC, Boca Raton (2015)

Download references

Acknowledgements

We thank the referee for a careful reading of the paper. We used Normaliz [4] and Macaulay2 [18] to give a normality test for monomial ideals and to compute Hilbert bases.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael H. Villarreal.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luis A. Dupont and Rafael H. Villarreal were supported by SNI, México. Humberto Muñoz-George was supported by a scholarship from CONACYT, México.

Appendix A: Procedures

Appendix A: Procedures

In this appendix we give procedures for Normaliz [4] and Macaulay2 [18] to determine the normality of a monomial ideal, the minimal generators of the ideal of covers of a clutter, the Hilbert basis of the Rees cone \({\mathbb {R}}_+\mathcal {A}'\) defined in Eq. (1.4), and the Hilbert basis of the cone \({\mathbb {R}}_+{\mathcal {B}}\) generated by the set \({\mathcal {B}}\) defined in Eq. (1.7). The sets \(\mathcal {A}'\) and \({\mathcal {B}}\) are used to characterize the normality of a monomial ideal (Lemma 2.2) and the normality of an ideal generated by monomials of degree two (Theorem 4.1).

Procedure A.1

Let \(I=(t^{v_1},\ldots ,t^{v_q})\) be a monomial ideal of S. The following procedure for Normaliz [4] computes the Hilbert basis of the cone generated by

$$\begin{aligned} {\mathcal {B}}=\{e_{s+1}\}\cup \{e_i+e_{s+1}\}_{i=1}^s\cup \{(v_i,1)\}_{i=1}^q, \end{aligned}$$

and determines whether or not \({\mathcal {B}}\) is a Hilbert basis. The input is the matrix whose rows are the vectors in the set \({\mathcal {B}}\). This procedure corresponds to Example 6.1.

figure a

Procedure A.2

Let \(I=(t^{v_1},\ldots ,t^{v_q})\) be a monomial ideal of S. The following procedure for Normaliz [4] computes the Hilbert basis of the Rees cone of I defined in Eq. (1.4) and determines whether or not the set \(\mathcal {A}'=\{e_i\}_{i=1}^s\cup \{(v_i,1)\}_{i=1}^q\) is a Hilbert basis. In particular, by Lemma 2.2, we can determine whether or not I is a normal ideal. The input is the matrix with rows \(v_1,\ldots ,v_q\). This procedure corresponds to Example 6.1.

figure b

Procedure A.3

(Normality test). Let I be a monomial ideal. We implement a procedure—that uses the interface of Macaulay2 [18] to Normaliz [4]—to determine the normality of I, and the normality and minimal generators of the ideal of covers of a clutter. This procedure corresponds to Example 6.2. To compute other examples, in the next procedure simply change the polynomial rings R and S, and the generators of I.

figure c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupont, L.A., Muñoz-George, H. & Villarreal, R.H. Normality Criteria for Monomial Ideals. Results Math 78, 34 (2023). https://doi.org/10.1007/s00025-022-01814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01814-1

Keywords

Mathematics Subject Classification

Navigation