Skip to main content
Log in

The Automorphisms Group and the Classification of Gradings of Finite Dimensional Associative Algebras

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let A be an n-dimensional algebra over a field k and a(A) its quantum symmetry semigroup. We prove that the automorphisms group \(\mathrm{Aut}_{\mathrm{Alg}} (A)\) of A is isomorphic to the group \(U \bigl ( G(a (A)^{\mathrm{o}} ) \bigl )\) of all invertible group-like elements of the finite dual \(a (A)^{\mathrm{o}}\). For a group G, all G-gradings on A are explicitly described and classified: the set of isomorphisms classes of all G-gradings on A is in bijection with the quotient set \( \mathrm{Hom}_{\mathrm{BiAlg}} \, \bigl ( a (A) , \, k[G] \bigl )/\approx \) of all bialgebra maps \(a (A) \, \rightarrow k[G]\), via the equivalence relation implemented by the conjugation with an invertible group-like element of \(a (A)^\mathrm{o}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agore, A.L.: Universal coacting Poisson Hopf algebras. Manuscr. Math. 165, 255–268 (2021)

    Article  MathSciNet  Google Scholar 

  2. Agore, A.L.: Categorical constructions for Hopf algebras. Commun. Algebra 39, 1476–1481 (2011)

    Article  MathSciNet  Google Scholar 

  3. Agore, A.L., Gordienko, A.S., Vercruysse, J.: Equivalences of (co)module algebra structures over Hopf algebras, to appear in J. Noncommut. Geom. arXiv:1812.04563

  4. Agore, A.L., Gordienko, A.S., Vercruysse, J.: \(V\)-universal Hopf algebras (co)acting on \(\Omega \)-algebras. arXiv:2005.12954

  5. Agore, A.L., Militaru, G.: A new invariant for finite dimensional Leibniz/Lie algebras. J. Algebra 562, 390–409 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bahturin, Y., Sehgal, S.K., Zaicev, M.V.: Group gradings on associative algebras. J. Algebra 241, 677–698 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bavula, V.V., Jordan, D.A.: Isomorphism problems and groups of automorphisms for generalized Weyl algebras. Trans. Am. Math. Soc. 353, 769–794 (2001)

    Article  MathSciNet  Google Scholar 

  8. Brown, K., Couto, M., Jahn, A.: The finite dual of commutative-by-finite Hopf algebras. arXiv:2105.13874

  9. Ceken, S., Palmieri, J., Wang, Y.H., Zhang, J.J.: The discriminant controls automorphism groups of noncommutative algebras. Adv. Math. 269, 551–584 (2015)

    Article  MathSciNet  Google Scholar 

  10. Couto, M.: Commutative-by-finite Hopf algebras and their finite dual. Thesis, University of Glasgow (2019). http://theses.gla.ac.uk/74418/

  11. Dascalescu, S., Ion, B., Nastasescu, C., Rios Montes, J.: Group gradings on full matrix rings. J. Algebra 220, 709–728 (1999)

    Article  MathSciNet  Google Scholar 

  12. Elduque, A., Kochetov, M.: Gradings: on simple lie algebras. In: Mathematical Surveys and Monographs, vol. 189. American Mathematical Society (2013)

  13. Ge, F., Liu, G.: A combinatorial identity and the finite dual of infinite dihedral group algebra. Mathematika 67, 498–513 (2021)

    Article  MathSciNet  Google Scholar 

  14. Gordienko, A., Schnabel, O.: On weak equivalences of gradings. J. Algebra 501, 435–457 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, K., Liu, G.: The finite duals of affine prime regular Hopf algebras of GK-dimension one. arXiv:2103.00495

  16. Manin, Y.I.: Quantum Groups and Noncommutative Geometry. Universite de Montreal, Centre de Recherches Mathematiques, Montreal (1988)

    MATH  Google Scholar 

  17. Montgomery, S.: Hopf Algebras and their Actions on Rings, vol. 82. AMS, Providence (1992)

    Google Scholar 

  18. Nastasescu, C., van Oystaeyen, F.: Methods of Graded Rings. Lecture Notes in Math, vol. 1836. Springer, Berlin (2004)

    Book  Google Scholar 

  19. Tambara, D.: The coendomorphism bialgebra of an algebra. J. Fac. Sci. Univ. Tokyo Math. 37, 425–456 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Radford, D.E.: Hopf Algebras. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  21. Radford, D.E.: The structure of Hopf algebras with a projection. J. Algebra 92, 322–347 (1985)

    Article  MathSciNet  Google Scholar 

  22. Shestakov, I., Umirbaev, U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17, 197–227 (2004)

    Article  MathSciNet  Google Scholar 

  23. Skolem, T.: Zur Theorie der assoziativen Zahlensysteme. Skrifter Oslo 12, 50 (1927)

    MATH  Google Scholar 

  24. Sweedler, M.E.: Hopf Algebras. Benjamin, New York (1969)

    MATH  Google Scholar 

  25. Zel’manov, E.I.: Semigroup algebras with identities. Sib. Math. J. 18, 557–565 (1977)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, Project Number PN-III-P4-ID-PCE-2020-0458, within PNCDI III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Militaru, G. The Automorphisms Group and the Classification of Gradings of Finite Dimensional Associative Algebras. Results Math 77, 13 (2022). https://doi.org/10.1007/s00025-021-01509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01509-z

Keywords

Mathematics Subject Classification

Navigation