Skip to main content
Log in

Non-resonance and Double Resonance for a Planar System via Rotation Numbers

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider a planar system \(z'=f(t,z)\) under non-resonance or double resonance conditions and obtain the existence of \(2\uppi \)-periodic solutions by combining a rotation number approach together with Poincaré-Bohl theorem. Firstly, we allow that the angular velocity of solutions of \(z'=f(t,z)\) is controlled by the angular velocity of solutions of two positively homogeneous system \(z'=L_i(t,z),i=1,2\), whose rotation numbers satisfy \(\rho (L_1)>n\) and \(\rho (L_2)<n+1\), namely, nonresonance occurs in the sense of the rotation number. Secondly, we prove the existence of \(2\uppi \)-periodic solutions when the nonlinearity is allowed to interact with two positively homogeneous system \(z'=L_i(t,z),i=1,2\), with \(\rho (L_1)\ge n\) and \(\rho (L_2)\le n+1\), which gives rise to double resonance, and some kind of Landesman–Lazer conditions are assumed at both sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loud, W.: Periodic solutions of nonlinear differential equations of Duffing type. In: Proceedings U.S.-Japan Seminar on Differential and Functional equations, pp. 199–224 (1967)

  2. Lazer, A., Leach, D.: Bounded perturbations of forced harmonic oscillators at resonance. Ann. Mat. Pura Appl. 82, 49–68 (1969)

    Article  MathSciNet  Google Scholar 

  3. Landesman, E., Lazer, A.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 609–623 (1970)

    MathSciNet  MATH  Google Scholar 

  4. Mawhin, J., Ward, J.R.: Nonuniform nonresonance conditions at the first eigenvalues for periodic solutions of forced Lienard and Dufling equations. Rocky Mt. J. Math. 112, 643–654 (1982)

    MATH  Google Scholar 

  5. Ding, T.: Nonlinear oscillations at a point of resonance. Sci. Sinica Ser. A 25, 918–931 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Omari, P., Zanolin, F.: A note on nonlinear oscillations at ressonance. Acta Math. Sinica (N.S.) 3, 351-361 (1987)

  7. Fonda, A., Habets, P.: Periodic solutions of asymptotically positively homogeneous differential equations. J. Differ. Equ. 81, 68–97 (1989)

    Article  MathSciNet  Google Scholar 

  8. Ding, T., Iannacci, R., Zanolin, F.: Existence and multiplicity results for periodic solutions of semilinear Duffing equations. J. Differ. Equ. 105, 364–409 (1993)

    Article  MathSciNet  Google Scholar 

  9. Fonda, A., Garrione, M.: Double resonance with Landesman-Lazer conditions for planar systems of ordinary differential equations. J. Differ. Equ. 250, 1052–1082 (2011)

    Article  MathSciNet  Google Scholar 

  10. Fonda, A., Sfecci, A.: A general method for the existence of periodic solutions of differential equations in the plane. J. Differ. Equ. 252, 1369–1391 (2012)

    Article  Google Scholar 

  11. Sfecci, A.: Double resonance for one-sided superlinear or singular non-linearities. Annali di Matematica 195, 2007–2025 (2016)

    Article  MathSciNet  Google Scholar 

  12. Sfecci, A.: Double resonance in Sturm-Liouville planar boundary value problems. Topol. Methods Nonlinear Anal. 55, 655–680 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Gan, S., Zhang, M.: Resonance pockets of hill’s equations with two-step potentials. SIAM J. Math. Anal. 32, 651–664 (2000)

    Article  MathSciNet  Google Scholar 

  14. Zhang, M.: The rotation number approach to the periodic fučik spectrum. J. Differ. Equ. 185, 74–96 (2002)

    Article  Google Scholar 

  15. Zanini, C.: Rotation numbers, eigenvalues, and the Poincaré-Birkhoff theorem. J. Math. Anal. Appl. 279, 290–307 (2003)

    Article  MathSciNet  Google Scholar 

  16. Margheri, A., Rebelo, C., Torres, P.J.: On the use of Morse index and rotation numbers for multiplicity results of resonant BVPs. J. Math. Anal. Appl. 413, 660–667 (2014)

    Article  MathSciNet  Google Scholar 

  17. Qian, D., Torres, P.J., Wang, P.: Periodic solutions of second order equations via rotation numbers. J. Differ. Equ. 266, 4746–4768 (2019)

    Article  MathSciNet  Google Scholar 

  18. Boscaggin, A., Garrione, M.: Resonance and rotation numbers for planar Hamiltonian systems: multiplicity results via the Poincaré-Birkhoff theorem. Nonlinear Anal. 74, 4166–4185 (2011)

    Article  MathSciNet  Google Scholar 

  19. Garrione, M., Margheri, A., Rebelo, C.: Nonautonomous nonlinear ODEs: nonresonance conditions and rotation numbers. J. Math. Anal. Appl. 473, 490–509 (2019)

    Article  MathSciNet  Google Scholar 

  20. Capietto, A., Mawhin, J., Zanolin, F.: Continuation theorems for periodic perturbations of autonomous systems. Trans. Am. Math. Soc. 329, 41–72 (1992)

    Article  MathSciNet  Google Scholar 

  21. Hale, J.K.: Ordinary Differential Equations, 2nd edn. Robert E. Krieger Publishing Company Inc., New York (1980)

    MATH  Google Scholar 

  22. Wang, S., Qian, D.: Periodic solutions of time-dependent planar Hamiltonian systems via rotation numbers, preprint, (2019)

  23. Dalbono, F., Zanolin, F.: Multiplicity results for asymptotically linear equations, using the rotation number approach. Mediterr. J. Math. 4, 127–149 (2007)

    Article  MathSciNet  Google Scholar 

  24. Zanolin, F.: Continuation theorems for the periodic problem via the translation operator. Rend. Sem. Mat. Univ. Politec. Torino 54, 1–23 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Lakshmikantham, V., Leela, S.: Differential and integral inequalities. Theory and Applications. Vol. I. Academic Press, New York and London, (1969)

Download references

Acknowledgements

The authors are grateful to an anonimous referee for a careful reading of a first version of this paper. This work is supported by the National Natural Science Foundation of China (No. 12071327), Spanish ERDF project MTM2017-82348-C2-1-P and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJD100004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Torres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Qian, D. & Torres, P.J. Non-resonance and Double Resonance for a Planar System via Rotation Numbers. Results Math 76, 91 (2021). https://doi.org/10.1007/s00025-021-01401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01401-w

Keywords

Mathematics Subject Classification

Navigation