Skip to main content
Log in

Solving a General Split Equality Problem Without Prior Knowledge of Operator Norms in Banach Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, using Bregman distance, we introduce an iterative algorithm for approximating a common solution of Split Equality Fixed Point Problem and Split Equality Equilibrium Problem in p-uniformly convex and uniformly smooth Banach spaces that are more general than Hilbert spaces. The advantage of the algorithm is that it is done without the prior knowledge of Bregman Lipschitz coefficients and operator norms. The strong convergence of the algorithm is established under mild assumptions. As special cases, we shall utilize our results to study the Split Equality Null point Problems and Split Equality Variational Inequality Problems. A numerical example is given to demonstrate the convergence of the algorithm. Our results complement and extend some related results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, volume 178 of Lecture Notes in Pure and Applied Mathematics. Dekker, New York, pp. 15–50 (1996)

  2. Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating proximal algorithms for weakly coupled minimization problems. Applications to dynamical games and PDEs. J. Convex Anal. 15, 485–506 (2008)

  4. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in Hilbert spaces. CMS Books in Mathematics/Ouvrages de Math\(\acute{e}\)matiques de la SMC, 2nd edn. Springer, New York (2017)

  5. Butnariu, D., Iusem, I.N., Resmerita, E.: Totall convexity for powers of the norm in uniformly convex Banach spaces. J. Convex Anal. 7, 319–334 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Butnariu, D., Kassay, G.: A proximal-projection method for finding zeroes of set-valued operators. SIAM J. Control Optim. 47, 2096–2136 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 1–39, p. 84919. Art. ID (2006)

  8. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory Appl. 165, 385–404 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Cegielski, A., Reich, S., Zalas, R.: Weak, strong and linear convergence of the \(CQ\)-method via the regularity of Landweber operators. Optimization 69, 605–636 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Gibali, A., Reich, S.: Extensions of Korplevich’s extragradient method for the variational inequaiity problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Google Scholar 

  17. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Chidume, C.E., Romanus, O.M., Nnyaba, U.V.: An iterative algorithm for solving split equilibrium problems and split equality variational inclusions for a class of nonexpansive-type maps. Optimization 67, 1949–1962 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Chidume, C.E., Romanus, O.M., Nnyaba, U.V.: An iterative algorithm for solving split equality fixed point problems for a class of nonexpansive-type mappings in Banach spaces. Numer. Algorithms 82, 987–1007 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear problems. Kluwer Academic, Dordrecht (1990)

    MATH  Google Scholar 

  21. Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)

    MathSciNet  MATH  Google Scholar 

  22. Eskandani, G.Z., Raeisi, M.: A new algorithm for finding fixed points of Bregman quasi-nonexpansive mappings and zeros of maximal monotone operators by using products of resolvents. Result Math. 71, 1307–1326 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Eskandani, G.Z., Raeisi, M., Rassias, T.M.: A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance. J. Fixed Point Theory Appl. 20, 132 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Eslamian, M., Eskandani, G.Z., Raeisi, M.: Split common null point and common fixed point problems between Banach spaces and Hilbert spaces. Mediterr. J. Math. 14, 119 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Hieu, D.V., Quy, P.K., Vy, L.V.: Explicit iterative algorithms for solving equilibrium problems. Calcolo 56, 11 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Kohsaka, F., Takahashi, W.: Proximal point algorithm with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505–523 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119, 317–333 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976). (In Russian)

    MathSciNet  MATH  Google Scholar 

  30. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)

    MATH  Google Scholar 

  31. Lopez, G., Martin-Marquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 27, 085004 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Maingé, P.E.: A viscosity method with no spectral radius requirements for the split common fixed point problem. Eur. J. Oper. Res. 235, 17–27 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Moharami, R., Eskandani, G.Z.: An extragradient algorithm for solving equilibrium problem and zero point problem in Hadamard spaces. RACSAM 114, 152 (2020). https://doi.org/10.1007/s13398-020-00885-5

  34. Moudafi, A.: Proximal point algorithm extended to equilibrum problem. J. Nat. Geometry 15, 91–100 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Moudafi, A.: Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex Anal. 15(4), 809–818 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Moudafi, A., Al-Shemas, E.: Simultaneous iterative methods for split equality problems and application. Trans. Math. Program. Appl. 1, 1–11 (2013)

    Google Scholar 

  37. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Quoc, T.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Raeisi, M., Eskandani, G.Z., Eslamian, M.: A general algorithm for multiple-sets split feasibility problem involving resolvents and Bregman mappings. Optimization 68, 309–327 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Raeisi, M., Eskandani, G.Z.: A hybrid extragradient method for a general split equality problem involving resolvents and pseudomonotone bifunctions in Banach spaces. Calcolo 56, 43 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Reem, D., Reich, S., De Pierro, A.: Re-examination of Bregman functions and new properties of their divergences. Optimization 68, 279–348 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Reich, S.: Book Review: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Amer. Math. Soc. 26, 367–370 (1992)

    MathSciNet  Google Scholar 

  43. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators. Marcel Dekker, New York, pp. 313–318 (1996)

  44. Reich, S., Salinas, Z.: Weak convergence of infinite products of operators in Hadamard spaces. Rend. Circ. Mat. Palermo 65, 55–71 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Reich, S., Tuyen, T.M.: Two projection algorithms for solving the split common fixed point problem. J. Optim. Theory Appl. 186, 148–168 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Reich, S., Tuyen, T.M., Trang, T.M.: Parallel iterative methods for solving the split common fixed point problem in Hilbert spaces. Numer. Funct. Anal. Appl. 41, 778–805 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Schöpfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Prob. 24, 055008 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Shehu, Y., Dong, Q., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 68, 385–409 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Semenov, V.V.: A strongly convergent splitting method for systems of operator inclusions with monotone operators. J. Autom. Inf. Sci. 46, 45–56 (2014)

    Google Scholar 

  50. Semenov, V.V.: Hybrid splitting methods for the system of operator inclusions with monotone operators. Cybern. Syst. Anal. 50, 741–749 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. Comput. Appl. Math. 38(2), 77 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)

    MathSciNet  MATH  Google Scholar 

  53. Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)

    MathSciNet  MATH  Google Scholar 

  54. Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155, 605–627 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)

    MathSciNet  MATH  Google Scholar 

  56. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientic Publishing, Singapore (2002)

    MATH  Google Scholar 

  57. Zhao, J.: Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms. Optimization 64, 2619–2630 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by a research grant of the University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Raeisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandani, G.Z., Raeisi, M. Solving a General Split Equality Problem Without Prior Knowledge of Operator Norms in Banach Spaces. Results Math 76, 4 (2021). https://doi.org/10.1007/s00025-020-01312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01312-2

Keywords

Mathematics Subject Classification

Navigation