Skip to main content
Log in

Second Type Neumann Series of Generalized Nicholson Function

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The second type Neumann series are considered whose building blocks are generalized Nicholson’s functions \(B_\nu ^p(x) :=J_\nu ^p(x)+ Y_\nu ^p(x)\), being \(J_\nu , Y_\nu \) Bessel functions of the first and second kind of order \(\nu \), \(p \ge 2\) integer. Closed form definite integral expressions are obtained for such series with the aid of the associated Dirichlet series’ Cahen’s Laplace integral form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, and in what follows [a] and \( \{a\}=a-[a]\) stand for the integer and fractional part of certain real a, respectively.

  2. Here, and in what follows \(\chi _A\) denotes the characteristic function of the set A.

References

  1. Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists: A Comprehensive Guide, 7th edn. Elsevier, Oxford (2013)

    MATH  Google Scholar 

  2. Baricz, Á., Jankov, D., Pogány, T.K.: Integral representations for Neumann-type series of Bessel functions \(I_{\nu },\) \(Y_{\nu }\) and \(K_{\nu }\). Proc. Amer. Math. Soc. 140(2), 951–960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baricz, Á., Jankov, D., Pogány, T.K.: Neumann series of Bessel functions. Integral Transforms Spec. Funct. 23(7), 529–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baricz, Á., Jankov Maširević, D., Pogány, T.K.: Series of Bessel and Kummer-Type Functions. Lecture Notes in Mathematics, vol. 2207. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  5. Baricz, Á., Pogány, T.K.: Properties of the product of modified Bessel functions. In: Milovanović, G.V., Rassias, M.T. (eds.) Analytic Number Theory, Approximation theory, and Special Functions, pp. 809–820. Springer, New York (2014). In Honor of Hari M. Srivastava

    Chapter  MATH  Google Scholar 

  6. Baricz, Á., Pogány, T.K., Ponnusamy, S., Rudas, I.: Bounds for Jaeger integrals. J. Math. Chem. 53(5), 1257–1273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beranek, L.L., Mellow, T.J.: Acoustics: Sound Fields and Transducers. In: Chapter 12 :Radiation and scattering of sound by the boundary value method, pp. 487–533. Academic Press, Cambridge (2012)

  8. Cahen, E.: Sur la fonction \(\zeta (s)\) de Riemann et sur des fonctions analogues. Ann. Sci. l’École Norm. Sup. (Sér. 3) 11, 75–164 (1894)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959)

    Google Scholar 

  10. Cochran, J.A.: Three-dimensional temperature response to impulsive input outside a spherical reservoir. SIAM J. Math. Anal. 18(5), 283–290 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dunster, T.M.: On the logarithmic derivative of Nicholson’s integral. Anal. Appl. 7(1), 73–86 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunster, T.M., Yedlin, M., Lam, K.: Resonance and the late coefficients in the scattered field of a dielectric circular cylinder. Anal. Appl. 4(4), 311–333 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Durand, L.: Product formulas and Nicholson-type integrals for Jacobi functions. I: Summary of results. SIAM J. Math. Anal. 9(1), 76–86 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Freitas, P.: Sharp bounds for the modulus and phase of Hankel functions with applications to Jaeger integrals. Math. Comp. 87(309), 289–308 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Translated from the Russian. Sixth edition. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. Academic Press, Inc., San Diego, CA, (2000)

  16. Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. University Press, Cambridge (1915)

    MATH  Google Scholar 

  17. Harrington, R.F.: Time–Harmonic Electromagnetic Fields. IEEE Press Series on Electromagnetic Wave Theory. Wiley, New York (2001)

    Book  Google Scholar 

  18. Homicz, G.F., Lordi, J.A.: A note on the radiative directivity patterns of duct acoustic modes. J. Sound Vib. 41(3), 283–290 (1975)

    Article  Google Scholar 

  19. Horvat, M., Prosen, T.: The bends on a quantum waveguide and cross-products of Bessel functions. J. Phys. A: Math. Theor. 40, 6349–6379 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hrycak, T., Schmutzhard, S.: A Nicholson-type integral for the cross-product of the Bessel functions. J. Math. Anal. Appl. 436(1), 168–178 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsu, Y.K.: A brief review of supercavitating hydrofoils. J. Hydronautics 2(4), 192–197 (1968)

    Article  Google Scholar 

  22. Jaeger, J.C.: Conduction of heat in regions bounded by planes and cylinders. Bull. Am. Math. Soc. 47(10), 734–741 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karamata, J.: Theory and Applications of Stieltjes integral. Srpska Akademija Nauka, Posebna izdanja CLIV, Matematički institut, Knjiga I, Beograd (1949). (in Serbian)

  24. Knopp, K.: Theorie und Anwendungen der unendlichen Reihen, Vierte edn. Springer, Berlin (1947)

    Book  MATH  Google Scholar 

  25. Korenev, B.G.: Bessel Functions and their Applications.Translated from the Russian by Pankratiev, E.V. Analytical Methods and Special Functions, Taylor & Francis Ltd, London (2002)

    Google Scholar 

  26. Krieger, L., Roth, M., von der Lühe, O.: Estimating the solar meridional circulation by normal mode decomposition. Astron. Nachr. 328(3/4), 252–256 (2007)

    Article  MATH  Google Scholar 

  27. Martinec, Z.: Thomson-Haskell matrix method for free spheroidal elastic oscillations. Geophys. J. Int. 98, 195–199 (1989)

    Article  Google Scholar 

  28. Muskhelishvili, N.I.: Singular Integral Equations.Boundary Problems of Function Theory and Their Application to Mathematical Physics, Translation from Russian by J.R.M. Radok. P. Noordhoff N. V., Groningen, Holland (1953)

    MATH  Google Scholar 

  29. Nicholson, J.W.: The asymptotic expansions of Bessel functions. Phil. Mag. 19(6), 228–249 (1910)

    Article  MATH  Google Scholar 

  30. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. NIST and Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  31. Phillips, W.R.C., Mahon, P.J.: On approximations to a class of Jaeger integrals. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2136), 3570–3589 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Perron, O.: Zur Theorie der Dirichletschen Reihen. J. Reine Angew. Math. 134, 95–143 (1908)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pogány, T.K.: Integral representation of a series which includes the Mathieu a-series. J. Math. Anal. Appl. 296(1), 309–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pogány, T.K.: Multiple Euler-McLaurin summation formula. Mat. Bilt. 29, 37–40 (2005)

    MATH  Google Scholar 

  35. Pogány, T.K.: Integral representation of Mathieu \((\varvec {a}, \varvec {\lambda })\)-series. Integral Transforms Spec. Funct. 16(5), 685–689 (2005)

    Article  MathSciNet  Google Scholar 

  36. Pogány, T.K., Süli, E.: Integral representation for Neumann series of Bessel functions. Proc. Amer. Math. Soc. 137(7), 2363–2368 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pogány, T.K., Srivastava, H.M., Tomovski, Ž.: Some families of Mathieu \(\varvec {a}\)-series and alternating Mathieu \(\varvec {a}\)-series. Appl. Math. Comput. 173(1), 69–108 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series. Direct Laplace Transforms. Gordon and Breach Science Publishers, New York,Reading, Paris,Montreux, Tokyo, Melbourne (1992)

    MATH  Google Scholar 

  39. Simon, B.: Harmonic Analysis. A Comprehensive Course in Analysis Part 3. American Mathematical Society, Providence, Rhode Island (2015)

    MATH  Google Scholar 

  40. Smith, L.P.: Heat flow in an infinite solid bounded internally by a cylinder. J. Appl. Phys. 8, 441–448 (1937)

    Article  MATH  Google Scholar 

  41. Tsao, C.Y.H., Payne, D.N., Gambling, W.A.: Modal characteristics of three-layered optical fiber waveguides: a modified approach. J. Opt. Soc. Am. A 6(4), 555–563 (1989)

    Article  Google Scholar 

  42. Vilenkin, N.J.: Special functions and the Theory of Group representations. Translated from the Russian by Singh, V. N. Translations of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island (1968)

    MATH  Google Scholar 

  43. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to both unknown referees for several constructive comments which mainly improve the exposition’s relevance and completeness and finally encompass the article. T.K. Pogány acknowledges the support given by the NAWA project PROM PPI/PRO/2018/1/00008 and thanks to the Department of Mathematical Physics, The Henryk Niewodniczański Institute of Nuclear Physics of Polish Academy of Sciences, Kraków, Poland for the warm hospitality and the excellent working atmosphere during his stay there during February 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Jankov Maširević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jankov Maširević, D., Pogány, T.K. Second Type Neumann Series of Generalized Nicholson Function. Results Math 75, 12 (2020). https://doi.org/10.1007/s00025-019-1138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-1138-0

Keywords

Mathematics Subject Classification

Navigation