Skip to main content
Log in

Translating Solitons for the Inverse Mean Curvature Flow

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate translating solitons for the inverse mean curvature flow (IMCF), which is a special solution deformed only for translation under the flow. The IMCF has been studied extensively not only as a type of a natural geometric flow, but also for obtaining various interesting geometric inequalities. We show that the translating solitons that are either ruled surfaces or translation surfaces are cycloid cylinders, and completely classify 2-dimensional helicoidal translating solitons and the higher dimensional rotationally symmetric translating solitons using the phase-plane analysis. The surface foliated by circles, which is called a cyclic surface, is regarded in terms of being the translating soliton for the IMCF, and then it is a surface of revolution whose revolution axis is parallel to the translating direction. In particular, we extend the result to a higher dimension, namely, the n-dimensional translating soliton foliated by spheres lying on parallel hyperplanes in \(\mathbb {R}^{n+1}\) must be a rotationally symmetric hypersurface whose rotation axis is parallel to the translating direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschuler, S.J., Wu, L.F.: Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differ. Equ. 2(1), 101–111 (1994)

    Article  MathSciNet  Google Scholar 

  2. Anciaux, H.: Two non existence results for the self-similar equation in Euclidean 3-space. J. Geom. 96(1–2), 1–10 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bray, H.L., Neves, A.: Classification of prime 3-manifolds with Yamabe invariant greater than \({\mathbb{RP}}^3\). Ann. Math. 159(1), 407–424 (2004)

    Article  MathSciNet  Google Scholar 

  4. Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the anti-de Sitter–Schwarzschild manifold. Commun. Pure Appl. Math. 69(1), 124–144 (2016)

    Article  MathSciNet  Google Scholar 

  5. Castro, I., Lerma, A.M.: Lagrangian homothetic solitons for the inverse mean curvature flow. Results Math. 71(3–4), 1109–1125 (2017)

    Article  MathSciNet  Google Scholar 

  6. Clutterbuck, J., Schnürer, O.C., Schulze, F.: Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differ. Equ. 29(3), 281–293 (2007)

    Article  MathSciNet  Google Scholar 

  7. Daskalopoulos, P., Huisken, G.: Inverse mean curvature flow of entire graphs. arXiv:1709.06665v1

  8. Drugan, G., Fong, F.T.-H., Lee, H.: Rotational symmetry of self-expanders to the inverse mean curvature flow with cylindrical ends. Math. Nachr. 290(17–18), 2826–2831 (2017)

    Article  MathSciNet  Google Scholar 

  9. Drugan, G., Lee, H., Wheeler, G.: Solitons for the inverse mean curvature flow. Pac. J. Math. 284(2), 309–326 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)

    Article  MathSciNet  Google Scholar 

  11. Guan, P., Li, J.: The quermassintegral inequalities for \(k\)-convex starshaped domains. Adv. Math. 221(5), 1725–1732 (2009)

    Article  MathSciNet  Google Scholar 

  12. Hieu, D.T., Hoang, N.M.: Ruled minimal surfaces in \(\mathbb{R}^3\) with density \(e^z\). Pac. J. Math. 243(2), 277–285 (2009)

    Article  Google Scholar 

  13. Hopf, H.: Differential Geometry in the Large: Seminar Lectures New York University 1946 and Stanford University 1956, vol. 1000. Springer, Berlin (2003)

    MATH  Google Scholar 

  14. Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. 20, 1045–1058 (1997)

    Article  MathSciNet  Google Scholar 

  15. Huisken, G., Ilmanen, T.: A note on inverse mean curvature flow. In: Proceedings of the Workshop on Nonlinear Partial Differential Equation, Saitama University (1997)

  16. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    Article  MathSciNet  Google Scholar 

  17. Huisken, G., Ilmanen, T.: Higher regularity of the inverse mean curvature flow. J. Differ. Geom. 80(3), 433–451 (2008)

    Article  MathSciNet  Google Scholar 

  18. Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differ. Equ. 8(1), 1–14 (1999)

    Article  MathSciNet  Google Scholar 

  19. Jagy, W.C.: Minimal hypersurfaces foliated by spheres. Mich. Math. J. 38(2), 255–270 (1991)

    Article  MathSciNet  Google Scholar 

  20. Kim, D., Pyo, J.: Translating solitons foliated by spheres. Int. J. Math. 28(1), 1750006 (2017)

    Article  MathSciNet  Google Scholar 

  21. Kim, D., Pyo, J.: Rigidity theorems of minimal surfaces foliated by similar planar curves. Results Math. 72(4), 1697–1716 (2017)

    Article  MathSciNet  Google Scholar 

  22. Kim, D., Pyo, J.: Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete Contin. Dyn. Syst. 38(11), 5897–5919 (2018)

    Article  Google Scholar 

  23. Kim, D., Pyo, J.: \(O(m) \times O(n)\)-Invariant homothetic solitons for inverse mean curvature flow in \({\mathbb{R}}^{m+n}\) preprint (2019)

  24. Kim, D., Pyo, J.: Remarks on solitons for inverse mean curvature flow. Preprint (2019)

  25. Kwong, K.-K., Miao, P.: A new monotone quantity along the inverse mean curvature flow in \(\mathbb{R}^{n}\). Pac. J. Math. 267(2), 417–422 (2014)

    Article  Google Scholar 

  26. Nitsche, J.C.C.: Cyclic surfaces of constant mean curvature. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1, 1–5 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Perdomo, O.M.: Helicoidal minimal surfaces in \(\mathbb{R}^3\). Ill. J. Math. 57(1), 87–104 (2013)

    Article  Google Scholar 

  28. Pyo, J.: Foliations of a smooth metric measure space by hypersurfaces with constant \(f\)-mean curvature. Pac. J. Math. 271, 231–242 (2014)

    Article  MathSciNet  Google Scholar 

  29. Pyo, J.: Compact translating solitons with non-empty planar boundary. Differ. Geom. Appl. 47, 79–85 (2016)

    Article  MathSciNet  Google Scholar 

  30. Rees, E.L.: Graphical discussion of the roots of a quartic equation. Am. Math. Mon. 29(2), 51–55 (1922)

    Article  MathSciNet  Google Scholar 

  31. Smoczyk, K.: Remarks on the inverse mean curvature flow. Asian J. Math. 4(2), 331–335 (2000)

    Article  MathSciNet  Google Scholar 

  32. Urbas, J.I.E.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(3), 355–372 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors warmly thank the referees for their careful reading of the paper and their valuable suggestions to improve the paper. The second author was supported in part by the National Research Foundation of Korea (NRF2017R1E1A1A03070495 and NRF-2017R1A5A1015722).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheol Pyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Pyo, J. Translating Solitons for the Inverse Mean Curvature Flow. Results Math 74, 64 (2019). https://doi.org/10.1007/s00025-019-0990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-019-0990-2

Keywords

Mathematics Subject Classification

Navigation