Skip to main content
Log in

Aftershock Analyses of the Qotur Doublet-Earthquakes on 23 February 2020 in West-Azarbaijan Province, NW Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Qotur doublet-earthquakes with magnitudes MN 5.7 and 5.9 occurred on 23 February 2020 in west Azarbaijan province near the Iran-Turkey border and was followed by many aftershocks. In this study the Qotur aftershocks sequence were relocated, by using the double-difference relocation method (HypoDD). The integrated data from Iranian Seismological Centre (IRSC) and Disaster and Emergency Management Presidency of Turkey (AFAD) catalogues were used. The aftershocks distribution indicates a seismic zone covering an area of approximately 15 × 10 km2 and oriented NE–SW. Depth distribution of aftershocks in the cross sections show that the focal depths decrease toward the S-SE part of the region and deeper-aftershocks are located in the N-NW part. The result presents that the dominant depth range of aftershocks is from ~ 3 to ~ 15 km. This observation suggests that the causative fault(s) of the Qotur doublet-earthquakes with striking along the northeast–southwest dip toward northwest. Probably, the Başkale fault zone is the causative fault for the Qotur doublet earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data used in this study were extracted from web sites of seismological centres, and the data is avaliable via their web-sites such as, Iranian Seismological Centre (IRSC) http://irsc.ut.ac.ir; Disaster and Emergency Management Presidency of Turkey (AFAD) https://deprem.afad.gov.tr/event-catalog; etc.

References

  • Alkan, H., Çınar, H., & Oreshin, S. (2020). Lake Van (South eastern Turkey) experiment: Receiver function analyses of lithospheric structure from teleseismic observations. Pure and Applied Geophysics, 177, 3891–3909.

    Article  ADS  Google Scholar 

  • Al-Lazki, A., Seber, D., & Sandvol, E. (2002). A crustal transect across the Oman Mountains on the eastern margin of Arabia. GeoArabia, 7, 47–78.

    Article  Google Scholar 

  • Ambraseys, N. N. (2001). Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophysical Journal International, 145, 471–487. https://doi.org/10.1046/j.0956-540x.2001.01396.x

    Article  ADS  Google Scholar 

  • Ambraseys, N. N., & Finkel, A. C. (1995). The seismicity of Turkey and adjacent areas: A historical review (pp. 1500–1800). Istanbul: M.S. Eren Beyoğlu.

    Google Scholar 

  • Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Cambridge University Press.

    Google Scholar 

  • Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3), 1027. https://doi.org/10.1029/2001GC000252

    Article  MathSciNet  ADS  Google Scholar 

  • Bondar, I., Myers, S., Engdahl, E., & Bergman, E. (2004). Epicentre accuracy based on seismic network criteria. Geophysical Journal International, 156, 483–496.

    Article  ADS  Google Scholar 

  • Coban, K. H., & Sayil, N. (2020). Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones. Arabian Journal of Geosciences, 13, 971. https://doi.org/10.1007/s12517-020-05945-z

    Article  Google Scholar 

  • Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Saroglu, F., & Sengor, A. M. C. (1986). Shortening of continental lithosphere: The neotectonics of Eastern Anatolia—A young collision zone. In: M. P. Coward & A. C. Riea (Eds.), Collision tectonics (Vol. 19, pp. 3–36). Geological Society, London, Special Publication.

  • Emre, Ö., Duman, T. Y., Özalp, S., Olgun, Ş., & Elmacı, H. (2012). 1:250,000 Scale Active Fault Map Series of Turkey, Başkale (NJ 38–6) Quadrangle. Serial Number: 55. Ankara-Turkey, General Directorate of Mineral Research and Exploration. https://www.mta.gov.tr/en/.

  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş, Elmacı, H., & Çan, T. (2016). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229–3275. https://doi.org/10.1007/s10518-016-0041-2

    Article  Google Scholar 

  • Esmaeili, C., Zare, T. K., Sartipi, A., Rajabzadeh, H. R., Nurain, Y., & Oroujy, Y. (2020). The geological features of the Qotur WEST Azarbaijan Earthquake on February 3, 2020 (Mw=5.7 & 5.9). Geological survey & mineral exploration (West Azarbaijan province). Report, 29 pp. (in Persian). https://ugsi.ir/?p=3532

  • Fichtner, A., Saygin, E., Taymaz, T., Cupillard, P., Capdeville, Y., & Trampert, J. (2013). The deep structure of the North Anatolian Fault Zone. Earth and Planetary Science Letters, 373, 109–117.

    Article  CAS  ADS  Google Scholar 

  • Gök, R., Pasyanos, M. E., & Zor, E. (2007). Lithospheric structure of the continent–continent collision zone: Eastern Turkey. Geophysical Journal International, 169, 1079–1088.

    Article  ADS  Google Scholar 

  • Havskov, J., & Ottemöller, L. E. (2005). SEISAN: The earthquake analysis software for Windows, SOLARIS, LINUX and MACKINTOSH, Version 8.1, Manual. Norway: Department of Earth Science, University of Bergen.

    Google Scholar 

  • Hessami, K., Jamali, F., & Tabassi, H. (2003). Major active faults of Iran, scale 1:25,000,000. Iran: Ministry of Science, Research and Technology, International Institute of Earthquake Engineering and Seismology.

    Google Scholar 

  • Jafari, M., Mousavi, Z., & Ghods, A. (2022). Coseismic slip modelling for 2020 Gotur earthquake based on InSAR data. In The 20th Iran geophysics conference (in Persian).

  • Karakhanian, A. S., Trifonov, V. G., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Bayraktutan, M. S., Bagdassarian, H., Arakelian, S., Davtian, V., & Adilkhanyan, A. (2004). Active faulting and natural hazards in Armenia, Eastern Turkey and North-Western Iran. Tectonophysics, 380, 189–219.

    Article  ADS  Google Scholar 

  • Kelin, F. W. (2014). User's Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes. U.S. Geological Survey Open File Report 02-171, 148 pp.

  • Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research, 99, 19635–19646. https://doi.org/10.1029/93JB03138

    Article  ADS  Google Scholar 

  • Klein, F. W. (1985). Users guide to HYPOINVERSE, a program for VAX and Professional 350 computers to solve for earthquake locations. U.S. Geological Survey Open File Report 85-515, 53 pp.

  • Koçyiǧit, A. (2013). New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey. Journal of Asian Earth Sciences, 62, 586–605.

    Article  MathSciNet  ADS  Google Scholar 

  • Koçyiǧit, A., Yılmaz, A., Adamia, S., & Kuloshvili, S. (2001). Neotectonic of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14, 177–195. https://doi.org/10.1016/S0985-3111(00)01064-0

    Article  ADS  Google Scholar 

  • Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H., & Vernant, P. (2006). Extension in NW Iran driven by MW 6.5, 6.4 Ahar-Varzghan doublet earthquakes 1203 the motion of the South Caspian Basin. Earth and Planetary Science Letters, 252, 180–188.

    Article  CAS  ADS  Google Scholar 

  • McClusky, S., Reilinger, R., Mahmoud, M., Ben-Sari, D., & Tealeb, A. (2003). GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International, 155, 126–138.

    Article  ADS  Google Scholar 

  • McKenzie, D. P. (1972). Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society, 30, 109–185.

    Article  ADS  Google Scholar 

  • Mindevalli, O. Y., & Mitchell, B. J. (1989). Crustal structure and possible anisotropy in Turkey from seismic surface wave dispersion. Geophysical Journal International, 98, 93–106.

    Article  ADS  Google Scholar 

  • Moradi, A., Hatzfeld, D., & Tatar, M. (2011). Microseismicity and seismotectonics of North Tabriz fault (Iran). Tectonophysics, 506, 22–30.

    Article  ADS  Google Scholar 

  • Mottaghi, A. A., Rezapour, M., & Yaminifard, F. (2010). Double difference relocation of earthquake hypocentres along the southern flank of the central Alborz, Iran. Bulletin of the Seismological Society of America, 100, 2014–2023.

    Article  Google Scholar 

  • Niassarifard, M., Shabanian, E., Solaymani Azad, S., & Madanipour, S. (2021). New tectonic configuration in NW Iran: Intracontinental dextral shear between NW Iran and SE Anatolia. Tectonophysics, 811, 228886. https://doi.org/10.1016/j.tecto.2021.228886

    Article  Google Scholar 

  • Nuttli, O. W. (1973). Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research, 78, 876–885.

    Article  ADS  Google Scholar 

  • Osmanşahin, I., & Sayil, N. (1996). Pn-wave velocity beneath Anatolia from the first arrivals. Bulletin of the International Institute of Seismology and Earthquake Engineering (IISEE), 30, 77–85.

    Google Scholar 

  • Osmanşahin, I., & Sayil, N. (2001). Near field travel-time solutions for Anatolia. Journal of the Balkan Geophysical Society, 4, 3–8.

    Google Scholar 

  • Ozer, C., Ozyazicioglu, M., Gok, E., & Polat, O. (2019). Imaging the crustal structure throughout the East Anatolian Fault Zone, Turkey, by local earthquake tomograph. Pure and Applied Geophysics, 176, 2235–2261. https://doi.org/10.1007/s00024-018-2076-6y

    Article  ADS  Google Scholar 

  • Ozturk, S. (2011). Characteristics of seismic activity in the Western, Central and Eastern parts of the North Anatolian Fault Zone, Turkey: Temporal and spatial analysis. Acta Geophysica, 59, 209–238. https://doi.org/10.2478/s11600-010-0050-5

    Article  ADS  Google Scholar 

  • Rezapour, M. (2005). Magnitude scale in the Tabriz seismic network. Journal of the Earth and Space Physics, 31, 13–21.

    Google Scholar 

  • Şaroǧlu, F., & Yılmaz, Y. (1986). Doǧu Anadolu’da neotektonik dönemdeki jeolojik evrim and havza modelleri. Maden Tektik Ve Arama Dergisi, 107, 73–94.

    Google Scholar 

  • Selçuk, A. S., & Düzgün, M. (2017). Tectonic geomorphology of Başkale Fault zone. Bulletin of the Mineral Research and Exploration, 155, 33–46.

    Google Scholar 

  • Selçuk, A. S., Erturaç, M. K., & Nomade, S. (2016). Geology of the Çaldıran Fault, Eastern Turkey: Age, slip rate and implications on the characteristic slip behaviour. Tectonophysics, 680, 155–173.

    Article  ADS  Google Scholar 

  • Solaymani Azad, S., Nemat, M., Abbassi, M. R., Foroutan, M., Hessami, K., Dominguez, S., Bolourchi, M. J., & Shahpasandzadeh, M. (2019). Active-couple indentation in geodynamics of NNW Iran: Evidence from synchronous left- and right-lateral co-linear seismogenic faults in western Alborz and Iranian Azerbaijan domains. Tectonophysics, 754, 1–17.

    Article  ADS  Google Scholar 

  • Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T. S., Kapetanidis, V., Yolsal-Çevikbilen, S., Erman, C., Keleş, D., Esmaeili, C., & Tsironi, V. (2022). The 23 February 2020 Qotur-Ravian earthquake doublet at the Iranian-Turkish border: Seismological and InSAR evidence for escape tectonics. Tectonophysics. https://doi.org/10.1016/j.tecto.2022.229482

    Article  Google Scholar 

  • Tchalenko, J. S., & Berberian, M. (1974). The Salmas (Iran) earthquake of May 6, 1930. Annali Di Geofisica, 27, 151–212.

    Google Scholar 

  • Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbasi, M. R., & Vigny, C. (2004). Contemporary crustal deformation and plate kinematics in Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 381–398.

    Article  ADS  Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2000). HypoDD—A program to compute double-difference earthquake location algorithm: Method and application to northern Hayward fault, California. Bulletin of the Seismological Society of America, 90, 1353–1368.

    Article  Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2001). HYPODD—A program to compute double-difference hypocentre locations, version 1.0. Open-File Report, U.S. Geologic Survey: 01-11325.

  • Walker, R., & Jackson, J. (2002). Offset and evolution of the Gowk fault, SE Iran: A major intra-continental strike slip system. Journal of Structural Geology, 24, 1677–1698.

    Article  ADS  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New, improved version of Generic Mapping Tools released. Eos Transactions American Geophysical Union, 79, 579.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Prof. Carla Filomena Braitenberg Editor-in-Chief of Pure and Applied Geophysics and two reviewers for their constructive comments, which helped to improve the quality of this paper. All data used in this study were extracted from web sites of seismological centres: Iranian Seismological Centre (IRSC); International Institute of Earthquake Engineering and Seismology (IIEES); Disaster and Emergency Management Presidency of Turkey (AFAD); International Seismological Centre (ISC); U.S. Geological Survey (USGS); Global Centroid Moment Tensor (GCMT); GeoForschungsZentrum, German Research Centre for Geosciences (GFZ). I am grateful for their contributions to this research. The figures were prepared using Generic Mapping Tools (Wessel & Smith, 1998).

Funding

No funding has been received from any organization.

Author information

Authors and Affiliations

Authors

Contributions

MR wrote the main manuscript text and MR prepared all figures and table.

Corresponding author

Correspondence to Mehdi Rezapour.

Ethics declarations

Conflict of interest

The author declare that I have no known competing financial interests or personal relationships that could have appeared to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezapour, M. Aftershock Analyses of the Qotur Doublet-Earthquakes on 23 February 2020 in West-Azarbaijan Province, NW Iran. Pure Appl. Geophys. 181, 37–52 (2024). https://doi.org/10.1007/s00024-023-03406-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03406-8

Keywords

Navigation