Skip to main content
Log in

Seismic Interactions Between Northern Terminus of Ornahc-Nal and Hoshab Faults Based on Source Mechanism Investigation of 06 May 2022 Mw 5.4 Khuzdar Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Moment tensor inversion was performed for earthquake of moderate magnitude occurring in May 2022 near Khuzdar, Pakistan. According to local news agencies, the event caused damages to engineered structures and collapse of several mud houses. Faulting style depicted from inversion implies that the event may be associated with Ornach-Nal strike-slip fault which is part of western boundary of Indian plate. To understand the tectonic setting of the area, the present study was augmented by inclusion of results from similar studies. Principal stress axis (SHmax) was determined by performing stress inversion. Based on 38 events focal mechanism solutions from the global Harvard Centroid Moment Tensor (CMT) of the Khuzdar region depict NW–SE orientation of SHmax direction. On the basis of their stress homogeneity, reduced stress tensors obtained from formal stress inversion have been divided into two subsets resulting in thrust and strike-slip faulting. The present-day stress state conforms to the oblique convergence of Indian and Arabian plates beneath Eurasian. Shear strain produced by strike-slip movement of plate boundary (Chaman fault system) is being accommodated in Kirthar range within the Indian plate. Before this event, a lower b-value (0.7) and accelerated earthquake sequence were observed in the Khuzdar region, which is (in our view evidence of presence of stress loaded asperities along this fault system) representation of stress loaded asperities exist. The spatial distribution of b-value depicts the lowest value in this region before the occurrence of Awaran earthquake of 2013 that took place about 70 km west of the recent event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data can be available upon requesting to corresponding author.

References

  • Ali, M., & Khan, M. J. (2015). GIS based study on seismicity of Makran over 100 years. International Journal of Economic and Environment Geology, 6(2), 11–16.

    Google Scholar 

  • Amelung, F., & King, G. (1997). Large-scale tectonic deformation inferred from small earthquakes. Nature, 386(6626), 702–705.

    Google Scholar 

  • Amitrano, D. (2003). Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research: Solid Earth, 108(1), 1–52. https://doi.org/10.1029/2001JB000680

    Article  Google Scholar 

  • Angelier, J. (2002). Détermination du tenseur des contraintes par inversion de mécanismes au foyer de séismes sans choix de plans nodaux. Comptes Rendus Geoscience, 334(1), 73–80.

    Google Scholar 

  • Angelier, J., & Mechler, P. (1977). Sur uneméthode graphique de recherche des contraintes principales également utilisables en tectonique et en seismologie: La méthode des dièdres droits. Bulletin De La Société Géologique De France, 8(6), 1309–1318.

    Google Scholar 

  • Avouac, J.-P., Ayoub, F., Wei, S., Ampuero, J.-P., Meng, L., Leprince, S., & Helmberger, D. (2014). The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault. Earth and Planetary Science Letters, 391, 128–134.

    Google Scholar 

  • Barnhart, W. D. (2017). Fault creep rates of the Chaman Fault (Afghanistan and Pakistan) inferred from InSAR. Journal of Geophysical Research: Solid Earth, 122(1), 372–386.

    Google Scholar 

  • Bender, F., & Raza, H. A. (1995). Geology of Pakistan, Beitrage zur Regionalen Geologie der Erde.

  • Bernard, M., Shen-Tu, B., Holt, W. E., & Davis, D. M. (2000). Kinematics of active deformation in the Sulaiman Lobe and Range, Pakistan. Journal of Geophysical Research: Solid Earth, 105(B6), 13253–13279.

    Google Scholar 

  • Bilham, R., Lodi, S., Hough, S., Bukhary, S., Khan, A. M., & Rafeeqi, S. F. A. (2007). Seismic hazard in Karachi, Pakistan: uncertain past, uncertain future. Seismological Research Letters, 78(6), 601–613.

    Google Scholar 

  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(02), 109–117.

    Google Scholar 

  • Carey-Gailhardis, E., & Mercier, J. L. (1987). A numerical method for determining the state of stress using focal mechanisms of earthquake populations: Application to Tibetan teleseisms and microseismicity of southern Peru. Earth and Planetary Science Letters, 82(1), 165–179.

    Google Scholar 

  • Chandra, U. (1979). Large-scale cenozoic tectonics of Central and South-Central Asia: Products of continental collision. Physics of the Earth and Planetary Interiors, 20(1), 33–41.

    Google Scholar 

  • Delvaux, D., & Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1), 105–128.

    Google Scholar 

  • Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., & V. San’kov,. (1997). Paleostress reconstructions and geodynamics of the Baikal region, central Asia, part 2. Cenozoic rifting. Tectonophysics, 282(1), 1–38.

    Google Scholar 

  • Delvaux, D., & Sperner, B. (2003). New aspects of tectonic stress inversion with reference to the Tensor program. Special Publication of the Geological Society of London, 212(1), 75–100.

    Google Scholar 

  • Dreger, D. S. (2003). TDMT_INV: Time domain seismic moment tensor inversion. In: International geophysics, Vol 81. Elsevier, Amsterdam, p. 1627.

  • El-Isa, Z. H., & Eaton, D. W. (2014). Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes. Tectonophysics, 615, 1–11.

    Google Scholar 

  • Farrell, J., Husen, S., & Smith, R. B. (2009). Earthquake swarm and b-value characterization of the yellowstone volcano-tectonic system. Journal of Volcanology and Geothermal Research, 188(1–3), 260–276.

    Google Scholar 

  • Frohling, E., & Szeliga, W. (2016). GPS constraints on interplate locking within the Makran Subduction Zone. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 205(1), 67–76.

    Google Scholar 

  • Fukuyama, E., Ishida, M., Dreger, D. S., & Kawai, H. (1998). Automated seismic moment tensor determination by using online broadband seismic waveforms. Journal of the Seismological Society of Japan, 51, 149–156.

    Google Scholar 

  • Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research, 89(B11), 9305–9320.

    Google Scholar 

  • Gerstenberger, M., Wiemer, S., & Giardini, D. (2001). A systematic test of the hypothesis that the b value varies with depth in California. Geophysical Research Letters, 28(1), 57–60.

    Google Scholar 

  • Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G., & Sammis, C. G. (2013). Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophysical Research Letters, 40(10), 2049–2054.

    Google Scholar 

  • Gulia, L., & Wiemer, S. (2010). The influence of tectonic regimes on the earthquake size distribution: A case study for Italy. Geophysical Research Letters. https://doi.org/10.1029/2010GL043066

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1942). Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological Society of America, 32(3), 163–191.

    Google Scholar 

  • Hadi, S., Khan, S. D., Owen, L. A., Khan, A. S., Hedrick, K. A., & Caffee, M. W. (2013). Slip-rates along the Chaman fault: Implication for transient strain accumulation and strain partitioning along the western Indian plate margin. Tectonophysics, 608, 389–400.

    Google Scholar 

  • Havskov, J., Voss, P.H. and Ottemoller, L. (2020). Seismological Observatory Software: 30 Yr of SEISAN. Seismological Research Letters, 91 (3), 1846–1852.

  • Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., Wsm Team. (2016). World stress map database release 2016. GFZ Data Services, 10, 1.

  • Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., & Müller, B. (2010). Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1), 3–15.

    Google Scholar 

  • Hinsch, R., Asmar, C., Nasim, M., Abbas, M. A., & Sultan, S. (2019). Linked thick-to thin-skinned inversion in the Central Kirthar Fold Belt of Pakistan. Solid Earth, 10(2), 425–446.

    Google Scholar 

  • Johnson, M., & Vincent, C. (2002). Development and testing of a 3D velocity model for improved event location: A case study for the India–Pakistan region. Bulletin of the Seismological Society of America, 92(8), 2893–2910.

    Google Scholar 

  • Jolivet, R., Duputel, Z., Riel, B., Simons, M., Rivera, L., Minson, S. E., Zhang, H., Aivazis, M. A. G., Ayoub, F., & Leprince, S. (2014). The 2013 Mw 7.7 Balochistan earthquake: Seismic potential of an accretionary wedge. Bulletin of the Seismological Society of America, 104(2), 1020–1030.

    Google Scholar 

  • Kazmi, A. H., Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic Publishers: Nazimabad, Karachi- Pakistan.

  • Kazmi, A. H., & Rana, R. A. (1982). Tectonic map of Pakistan 1: 2 000 000: Map showing structural features and tectonic stages in Pakistan. Geological survey of Pakistan.

  • Khan, M. Y., & Mittnik, S. (2018). Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush Region. Journal of Seismology, 22(1), 353–376.

    Google Scholar 

  • Khan, S. A., Shah, M. A., & Qaisar, M. (2003). Seismic risk analysis of coastal area of Pakistan. Acta Seismologica Sinica., 16(4), 382–394. https://doi.org/10.1007/s11589-003-0071-0

    Article  Google Scholar 

  • Khan, S., Waseem, M., Khan, M. A., & Ahmed, W. (2018). Updated earthquake catalogue for seismic hazard analysis in Pakistan. Journal of Seismology, 22(4), 841–861.

    Google Scholar 

  • Kissling, E., Kradolfer, U., Maurer, H. (1995). Program VELEST user’s guide-short introduction. Institute of Geophysics, ETH Zurich

  • Kohketsu, K. (1985). The extended reflectivity method for synthetic near-field seismogram. Journal of Physics of the Earth, 33, 121–131.

    Google Scholar 

  • Kulhanek, O., Persson, L., & Nuannin, P. (2018). Variations of B-values preceding large earthquakes in the shallow subduction zones of Cocos and Nazca Plates. Journal of South American Earth Sciences, 82, 207–214.

    Google Scholar 

  • Lawrence, R. D., Yeats, R. S., Khan, S. H., Farah, A., & DeJong, K. A. (1981). Thrust and strike slip fault interaction along the Chaman transform zone, Pakistan. Special Publication of the Geological Society of London, 9, 363–370.

    Google Scholar 

  • Lienert, B. (1991). Report on modifications made to Hypocenter. Institute of Solid Earth Physics.

  • Lienert, B. R., Berg, E., Frazer, L. N. (1986). HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares. Bull. Seismol. Soc. Am., 76(3), 771–783.

  • Lienert, B. R., Havskov, J. (1995). A computer program for locating earthquakes both locally and globally. Seismological Research Letters, 66(5), 26–36.

    Google Scholar 

  • Lund, B., & Townend, J. (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal International, 170(3), 1328–1335.

    Google Scholar 

  • Martínez-Garzón, P., Kwiatek, G., Sone, H., Bohnhoff, M., Dresen, G., & Hartline, C. (2014). Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: A case study from the geysers geothermal field. Journal of Geophysical Research: Solid Earth, 119(11), 8378–8396.

    Google Scholar 

  • Meredith, P. G., Main, I. G., & Jones, C. (1990). Temporal variations in seismicity during quasi-static and dynamic rock failure. Tectonophysics, 175(1–3), 249–268.

    Google Scholar 

  • Mogi, K. (1963). Some Discussions on aftershocks, foreshocks and earthquake swarms: The fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena (third paper). Bulletin of the Earthquake Research Institute, University of Tokyo, 41(3), 615–658.

    Google Scholar 

  • Montuori, C., Falcone, G., Murru, M., Thurber, C., Reyners, M., & Eberhart-Phillips, D. (2010). Crustal heterogeneity highlighted by spatial b-value map in the Wellington region of New Zealand. Geophysical Journal International, 183(1), 451–460.

    Google Scholar 

  • Quittmeyer, R., & Jacob, K. H. (1979). Historical and modern seismicity of Pakistan, Afghanistan, northwestern India, and southeastern Iran. Bulletin of the Seismological Society of America, 69(3), 773–823.

    Google Scholar 

  • Rajabi, M., Tingay, M., Heidbach, O., Hillis, R., & Reynolds, S. (2017). The present-day stress field of Australia. Earth-Science Reviews, 168, 165–189. https://doi.org/10.1016/j.earscirev.2017.04.003

    Article  Google Scholar 

  • Reches, Z. E., Baer, G., & Hatzor, Y. (1992). Constraints on the strength of the upper crust from stress inversion of fault slip data. Journal of Geophysical Research, 97(B9), 12481–12493. https://doi.org/10.1029/90JB02258

    Article  Google Scholar 

  • Reynolds, K., Copley, A., & Hussain, E. (2015). Evolution and dynamics of a fold-thrust belt: The Sulaiman Range of Pakistan. Geophysical Journal International, 201(2), 683–710.

    Google Scholar 

  • Sabahat, S., Tahir, M., Iqbal, M. T., Iqbal, J., & Iqbal, T. (2022). Source parameters of the Fatehjang, Pakistan earthquake Mw4.1 of 28 August 2020. Arabian Journal of Geosciences, 15(21), 1–17.

    Google Scholar 

  • Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402.

    Google Scholar 

  • Schorlemmer, D., Wiemer, S. (2005). Microseismicity data forecast rupture area. Nature, 434(7037), 1086.

    Google Scholar 

  • Shaukat, A. Z., Tahir, M., Iqbal, T., Iqbal, T., & Shah, M. A. (2023). Seismotectonic analysis of the 7 October 2021 Mw 5.9 Harnai Earthquake, Pakistan. Bulletin of the Seismological Society of America, 113(2), 636–647.

    Google Scholar 

  • Sobiesiak, M., Meyer, U., Schmidt, S., Götze, H.-J., & Krawczyk, C. M. (2007). Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2006JB004796

    Article  Google Scholar 

  • Soomro, R. A., Iqbal, S., Shah, M. A., & Iqbal, T. (2022). P-wave minimum 1D velocity model for central and northern Pakistan. Journal of Seismology, 26(5), 1039–1049.

    Google Scholar 

  • Spada, M., Tormann, T., Wiemer, S., & Enescu, B. (2013). Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40(4), 709–714.

    Google Scholar 

  • Vavrycčuk, V. (2005). Focal mechanisms in anisotropic media. Geophysical Journal International, 161(2), 334–346.

    Google Scholar 

  • Warren, N. W., & Latham, G. V. (1970). An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. Journal of Geophysical Research, 75(23), 4455–4464.

    Google Scholar 

  • Waseem, M., Khan, M. A., & Khan, S. (2019). Seismic sources for Southern Pakistan and seismic hazard assessment of Karachi. Natural Hazards, 99(1), 511–536.

    Google Scholar 

  • Wiemer, S., & Zúniga, R. F. (1994). ZMAP—A software package to analyze seismicity, EOS, transactions, fall meeting, AGU 75. In: Meeting, AGU (p. 456)

  • Wiemer, S., & Wyss, M. (1997). Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research, 102(B7), 15115–15128.

    Google Scholar 

  • Wyss, M., Sobolev, G., & Clippard, J. D. (2004). Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods. Earth, Planets and Space, 56(8), 725–740.

    Google Scholar 

  • Yagi, Y., & Fukahata, Y. (2008). Importance of covariance components in inversion analyses of densely sampled observed data: An application to waveform data inversion for seismic source processes. Geophysical Journal International, 175, 215–221.

    Google Scholar 

  • Yagi, Y., Nishimura, N. (2011). Moment tensor inversion of near source seismograms. Bulletin of the International Institute of Seismology and Earthquake Engineering, 45, 133–138.

    Google Scholar 

  • Zúniga, F. R., & Wiemer, S. (1999). Seismicity patterns: Are they always related to natural causes? Pure and Applied Geophysics, 155(2), 713–726.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director General (CES) and Pakistan Metrological Department (PMD) for the data used in this study. The authors are also thankful to Bilal Saif, Naveed Mushtaq and Muhammad Yousaf Khan for ArcGIS, GMT and Win-Tensor software and for improving this manuscript technical writing. We thank the reviewers and Editor-in-chief Carla F. Braitenberg for their time spent on reviewing our manuscript, careful reading and insightful comments and suggestions that lead to improve the quality of this manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, data analysis and writing: AZS. Formal analysis, methodology and theory: MT. Geological model of area: TI. Project supervision, administration and draft correction: TI. Technical investigations: MAS.

Corresponding author

Correspondence to Mohammad Tahir.

Ethics declarations

Conflict of interest

The authors whose names listed in manuscript certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaukat, A.Z., Tahir, M., Iqbal, T. et al. Seismic Interactions Between Northern Terminus of Ornahc-Nal and Hoshab Faults Based on Source Mechanism Investigation of 06 May 2022 Mw 5.4 Khuzdar Earthquake. Pure Appl. Geophys. 180, 3435–3455 (2023). https://doi.org/10.1007/s00024-023-03352-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03352-5

Keywords

Navigation