Skip to main content
Log in

Stress-Strain Characteristics Before the 2021 Ms 6.4 Yangbi Earthquake in Yunnan Province, China, and Implications for the Seismogenic Mechanism

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On May 21, 2021, an Ms 6.4 earthquake occurred in Yangbi County, Yunnan Province, China. The epicenter was located on a secondary blind fault on the southwestern boundary of the Sichuan-Yunnan Block, and this area has a complex tectonic setting and seismogenic background. To improve the understanding of the seismogenic mechanism of this earthquake, we conduct an in-depth analysis on the regional stress and strain characteristics based on geodetic data from the Global Navigation Satellite System (GNSS) and seismological data (focal mechanism solutions) and analyze the stress changes at the epicenter of this earthquake from the perspective of stress triggering. The results show that the epicenter area of the Yangbi earthquake was characterized by significant shear and extension deformation, with a dextral shear rate of 2.5 × 10−8/a and an extension rate of 3.5 × 10−8/a. The present tectonic stress of the study area is dominated by NNW-directed principal compressive stress and NEE-directed principal extension stress, and the Yangbi main shock occurred on the optimal release nodal plane of the tectonic stress field where the relative shear stress reached 0.984. Furthermore, the cumulative Coulomb stress changes caused by four strong historical earthquakes exceeded the stress trigger threshold of 0.1 bar. All of these results suggest that the Yangbi Ms 6.4 earthquake was the result of the maximum effective shear stress concentration on the blind fault on the southwest side of the Weixi-Qiaohou fault, which was mainly driven by the regional tectonic stress and the surrounding historical strong earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The GNSS velocities and GNSS time series are available at https://www.eqdsc.com/. The focal mechanism solutions are from the works of Shuzhong Sheng et al. (2022) and the National Seismic Science Data Center (https://data.earthquake.cn, 2022. DOI: https://doi.org/10.12080/nedc.11.Ds.2022.0004).

References

  • Chang, Z., Chang, H., & Dai, B. (2016). Recent active features of Weixi–Qiaohou fault and its relationship with the Honghe fault. Journal of Geomechanics, 22(3), 517–530.

    Google Scholar 

  • Chang, Z., Chang, H., Li, J., Mao, Z., & Zang, Y. (2021). Holoceneactivity and paleoearthquake of the Weixi–Qiaohou fault. Seismology and Geology., 43(4), 881–898.

    Google Scholar 

  • China Earthquake Networks Center. (2022). https://www.cenc.ac.cn/cenc/dzxx/396391/index.html.

  • Duan, M., Zhao, C., Zhou, L., Zhao, C., & Zuo, K. (2021). Seismogenic structure of the May 21 2021 MS6.4 Yunnan Yangbi earthquake sequence. Chinese Journal of Geophysics, 64(9), 3111–3125. https://doi.org/10.6038/cjg2021P0423

    Article  Google Scholar 

  • Fan, W. (2023). Charateristics of tectonic stress field around the Yangbi Ms6.4 earthquake and it surrounding areas on May 21 2021 and its geodynamic implication. Seismology and Geology, 45(1), 208–230.

    Google Scholar 

  • Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33(1), 335–367.

    Google Scholar 

  • Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research: Solid Earth, 89(B11), 9305–9320.

    Google Scholar 

  • GFZ. (2021). https://geofon.gfz-potsdam.de/

  • Global centroid moment tensor. (2021). Global CMT catalog search. [2021-05-21]. https://www.globalcmt.org/CMTsearch.html.

  • Guo, X. Y., Yin, H. Q., Wang, Z. J., & Yang, H. (2021). Earthquake centroid, seismic moment tensor and dynamic environment analysis of the Ms6.4 earthquake sequence in Yangbi, Yunnan on May 21, 2021. Seismology and Geology., 43(4), 806–826.

    Google Scholar 

  • Han, Z., Guo, S., Xiang, H., Zhang, J., & Ran, Y. (2004). Seismotectonic environment of occurring the February 3, 1996 Lijiang M = 70 earthquake Yunnan Province. Acta Seismologica Sinica, 17(4), 453–463.

    Google Scholar 

  • Hardebeck, J., & Mich, A. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2005JB004144

    Article  Google Scholar 

  • Harris, R. A. (1998). Introduction to special section: Stress triggers, stress shadows, and implication for seismic hazard. Journal of Geophysical Research, 103(B10), 24347–24358. https://doi.org/10.1029/98JB01576

    Article  Google Scholar 

  • Herring T., King R., & McClusky, S. (2010a). GAMIT Reference Manual. GPS Analysis at MIT. Release 10.4. Massachusetts Institute Technology, http://www-gpsg.mit.edu/~simon/gtgk/index.htm.

  • Herring, T., King, R., & McClusky, S. (2010b). GLOBK Reference Manual. Global Kalman filter VLBI and GPS analysis program. Release 10.4. Massachusetts Institute Technology, http://www-gpsg.mit.edu/~simon/gtgk/index.htm.

  • Hsu, Y., Yu, S., Simons, M., Kuo, L., & Chen, H. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1), 4–18.

    Google Scholar 

  • Hu, X., Zang, A., Heidbach, O., Cui, X., Xie, F., & Chen, J. (2017). Crustal stress pattern in China and its adjacent areas. Journal of Asian Earth Sciences, 149, 20–28. https://doi.org/10.1016/j.jseaes.2017.07.005

    Article  Google Scholar 

  • Jaeger, J.C., & Cook, N.G.W. (1969). Fundamentals of Rock Mechanics (New York).

  • Kan, R. (1977). Study on the current tectonic stress field and the characteristics of current tectonic activity in southwest China. Acta Geophysica Sinica, 20(2), 96–107.

    Google Scholar 

  • King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84, 935–980.

    Google Scholar 

  • Lei, X., Wang, Z., Ma, S., & He, C. (2021). A preliminary study on the characteristics and mechanism of the May 2021 Ms 6.4 Yangbi earthquake sequence, Yunnan China. Acta Seismologica Sinica, 43(3), 261. https://doi.org/10.11939/jass.20210100

    Article  Google Scholar 

  • Lei, X., Xie, C., & Fu, B. (2011). Remotely triggered seismicity in Yunnan, southwestern China, following the 2004 Mw 9.3 Sumatra earthquake. Journal of Geophysical Research: Solid Earth, 116, B08303.

    Google Scholar 

  • Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America., 100(5A), 1971–1988.

    Google Scholar 

  • Li, D., Ding, Z., Wu, P., Liu, S., Deng, P., Liu, S., Deng, F., Zhang, X., & Zhao, H. (2021). The Characteristics of crustal structure and seismogenic background of Yangbi Ms6.4 earthquake on May 21, 2021 in Yunnan Province China. Chinese Journal of Geophysics., 64(9), 3083–3100. https://doi.org/10.6038/cjg2021P0405

    Article  Google Scholar 

  • Li, X., Wang, C., Zhu, C., Wang, S., Li, W., Wang, L., & Zhu, W. (2022). Coseismic deformation field extraction and fault slip inversion of the 2021 Yangbi Mw 6.1 earthquake, Yunnan Province, based on time-Series InSAR. Remote Sensing., 14, 1017. https://doi.org/10.3390/rs14041017

    Article  Google Scholar 

  • Li, Y., Liu, M., Li, Y., & Chen, L. (2019). Active crustal deformation in southeastern Tibetan Plateau: the kinematics and dynamics. Earthquake and Planetary Science Letters, 523, 115708.

    Google Scholar 

  • Li, Y., Shi, F. Q., Zhang, H., Wei, W. X., Xu, J., & Shao, Z. G. (2020). Coulomb stress change on active faults in Sichuan-Yunnan region and its implications for seismic hazard. Seismology Geology., 42, 526.

    Google Scholar 

  • Li, Y., Yang, G., Li, Z., Guo, L., Huang, C., Zhu, W., Fu, Y., Wang, Q., Jiang, Z., & Wang, M. (2003). Movement and strain conditions of active blocks in Chinese mainland. Science China: Earth Sciences., 46, 82–117.

    Google Scholar 

  • Liu, G., Li, F., & Li, G. (1986). Active tectonics and state of stress in seismic region of north-west Yunnan Province China. Seismology Geology., 8(1), 1–14.

    Google Scholar 

  • Liang, H., Zhan, W., & Li J. (2021). Vertical surface displacement of mainland China from GPS using the multisurface function method. Advances in Space Research, 68(12), 4898–4915. https://doi.org/10.1016/j.asr.2021.02.024.

    Article  Google Scholar 

  • Long, F., Qi, Y. P., Yi, G. X., Wu, W. W., Wang, G. M., Zhao, X. Y., & Peng, G. L. (2021). Relocation of the Ms 6.4 Yangbi earthquake sequence on May 21, 2021 in Yunnan Province and its seismogenic structure analysis. Chinese Journal of Geophysics., 64(8), 2631–2646.

    Google Scholar 

  • Pollitz, F. F., & Sacks, I. S. (2002). Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake. Bulletin of the Seismological Society of America., 87, 1–10.

    Google Scholar 

  • Richards, S., Lister, G., & Kennett, B. (2007). A siab in depth: Three-dimensional geometry and evolution of the Indo–Australian Plate. Geochemistry, Geophysics, Geosystems, 8(12), Q12003. https://doi.org/10.1029/2007GC00165

    Article  Google Scholar 

  • Royden, L. H., Burchfel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058. https://doi.org/10.1126/science.1155371

    Article  Google Scholar 

  • Savage, J., Gan, W., & Svarc, J. (2001). Strain accumulation and rotation in the eastern California Shear Zone. Journal of Geophysical Research, 106(B10), 21995–22007.

    Google Scholar 

  • Scholz, C. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42.

    Google Scholar 

  • Shan, B., Xiong, X., Wang, R., Zheng, Y., & Yang, S. (2013). Coulomb stress evolution along Xianshuihe–Xiaojiang fault system since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth and Planetary Science Letters, 377–378, 199–210.

    Google Scholar 

  • Shao, Z., Xu, J., Ma, H., & Zhang, L. (2016). Coulomb stress evolution over the past 200 years and seismic hazard along the Xianshuihe fault zone of Sichuan, China. Tectonophysics, 670, 48–65.

    Google Scholar 

  • Shen, Z., Wang, M., Zeng, Y., & Wang, F. (2015). Optimal interpolation of spatially discretized geodetic data. Bulletin of the Seismological Society of America, 105(4), 2117–2127.

    Google Scholar 

  • Sheng, S., Hu, X., Wang, X., Wan, Y., Li, H., Li, Z., Tian, X., Wang, X., & Zhang, S. (2022). Study on the crustal stress field of Yunnan and its adjacent areas. Chinese Journal of Geophysics, 65(9), 3252–3267.

    Google Scholar 

  • Shi, Y. L., & Cao, J. L. (2008). Effective viscosity of China continental lithosphere. Earth Science Frontiers, 15(3), 82–95. in Chinese.

    Google Scholar 

  • Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605–609.

    Google Scholar 

  • Sun, Q., Guo, Z., Pei, S., Fu, Y., & Chen, Y. (2022). Fluids triggered the 2021 Mw 6.1 Yangbi earthquake at an unmapped fault: implications for the tectonics at the northern end of the red river fault. Seismological Research Letters, 93(2A), 666–679. https://doi.org/10.1785/0220210227

    Article  Google Scholar 

  • Tape, C., Muse, P., Simons, M., Dong, D., & Webb, F. (2009). Multiscale estimation of GPS velocity fields. Geophys J Inter, 179(2), 945–971.

    Google Scholar 

  • Tapponnier, P., Peltzer, G., Le Dain, A. T., Armijo, R., & Cobbold, P. R. (1982). Propagating extrusion tectonics in Asia: New insight from simple experiments with plasticine. Geology, 10(2), 611–616.

    Google Scholar 

  • Tian, J., Luo, Y., & Zhao, L. (2019). Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes. Earth and Planetary Physics, 3(3), 243–252.

    Google Scholar 

  • USGS, (2021). USGS CMT catalog. [2021-05-21]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000g9zq/moment-tensor.

  • Wan, Y. (2020). Simulation on relationship between stress regimes and focal mechanism of earthquakes. Chinese Journal of Geophysics, 63(6), 2281–2296.

    Google Scholar 

  • Wan, Y., Sheng, S., Huang, J., Li, X., & Chen, X. (2016). The grid search algorithm of tectonic stress tensor based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos. Journal of Earth Science, 27(5), 777–785.

    Google Scholar 

  • Wang, C., Chan, W. W., & Mooney, W. D. (2003). Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implication. Journal of Geophysical Research, 108(B9), 2442. https://doi.org/10.1029/2002JB001973

    Article  Google Scholar 

  • Wang, R., Lorenzo-Martin, F., & Roth, F. (2006). PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Computers & Geosciences, 32, 527–541.

    Google Scholar 

  • Working Group on the Stong Earthquakes of M≥7. (2012). Study on the mid- to long-term potential of large earthquakes on the Chinese continent (pp. 1–336). Seismological Press.

    Google Scholar 

  • Wu, Y., Jiang, Z., Pang, Y., & Chen, C. (2021). Statistical correlation of seismicity and geodetic strain rate in the Chinese mainland. Seismological Research Letters, 93(1), 268–276.

    Google Scholar 

  • Wu, Y. Q., Jiang, Z. S., & Yang, G. H. (2009). Research of spatial separating method by GPS time series. Journal of Seismological Research, 32(3), 306–311.

    Google Scholar 

  • Wu, Y., Jiang, Z., Yang, G., Wei, W., & Liu, X. (2011). Comparison of GPS strain rate computing methods and their reliability. Geophysical Journal International, 185, 703–717.

    Google Scholar 

  • Wu, Y. Q., Jiang, Z. S., Zhao, J., Liu, X. X. W., Wei, X. Q., Liu, Q., Li, Q., Zou, Z. Y., & Zhang, L. (2015). Crustal deformation before the 2008 Wenchuan Ms 8.0 earthquake studied using GPS data. Journal of Geodynamics., 85, 11–23. https://doi.org/10.1016/j.jog.2014.12.002

    Article  Google Scholar 

  • Xiang, H., Guo, S., Ran, Y., Li, X., Zhang, J., Chen, T., & Zhang, G. (1986). Recent Tectonic stress field in the northwest of the Yunnan Province. Seismology Geology., 8(4), 15–23.

    Google Scholar 

  • Xu, X., Ji, L., Zhu, L., Wang, G., Zhang, W., & Li, N. (2021). The coseismic deformation characteristis and seimogenics structure of the Yangbi Ms6.4 earthquake. Seismology Geology., 43(4), 771–789.

    Google Scholar 

  • Xu, X., Wen, X., Zheng, R. Z., Ma, W., Song, F. M., & Yu, G. (2003). Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Science in China, Series D: Earth Sciences, 46, 210–226.

    Google Scholar 

  • Yan, K., Wang, W., Peng, F., Wang, Q., Kou, H., & Yuan, A. (2022). The seismogenic structures and migration characteristics of the 2021 Yangbi M6.4n Earthquake sequence in Yunnan China. Science China Earth Sciences, 65(8), 1522–1537. https://doi.org/10.1007/s11430-021-9933-1

    Article  Google Scholar 

  • Yang, J., Wen, Y., & Xu, C. (2021). The May 21 2021 Ms 6.4 Yangbi (Yunnan) earthquake: a shallow strike-slip event rupturing in a blind fault. Chinese Journal of Geophysics., 64(9), 3101–3110. https://doi.org/10.6038/cjg2021P0408

    Article  Google Scholar 

  • Yang, T., Li, B., Fang, L. H., Su, Y. J., Zhong, Y. S., Yang, J. Q., Qin, M., & Xu, Y. J. (2022). Relocation of the Fore-shocks and Aftershocks of the 2021 Ms 6.4 Yangbi Earthquake Sequence, Yunnan China. Journal of Earth Science, 33(4), 892–900.

    Google Scholar 

  • Ye, T., Chen, X., Huang, Q., & Cui, T. (2021). Three-dimensional Electrical Resistivity Structure in Focal Area of the Yangbi Ms6.4 Earthquake and its Possible Seismogenic Mechanism. Chinese Journal of Geophysics., 64(7), 2267–2276. https://doi.org/10.6038/cjg2021O0523

    Article  Google Scholar 

  • Yunnan Earthquake Bureau. (2021). http://www.yndzj.gov.cn

  • Zhang, K., Gan, W., Liang, S., Xiao, G., Dai, C., Wang, Y., Li, Z., Zhang, L., & Li, G. (2021). Coseismic displacement and slip distribution of the 2021 May 21, Ms6.4, Yangbi earthquake derived from GNSS observation. Chinese Journal of Geophysics., 64(7), 2053–2266. https://doi.org/10.6038/cjg2021O0524

    Article  Google Scholar 

  • Zhang, Y., An, Y., Long, F., Zhu, G., Qin, M., Zhong, Y., Xun, Q., & Yang, H. F. (2022). Short-term foreshock and aftershock patterns of the 2021 Ms 6.4 Yangbi earthquake sequence. Seismological Society of America, 93, 21–32. https://doi.org/10.1785/0220210154

    Article  Google Scholar 

  • Zhou, Y., Ren, C., Ghosh, A., Meng, H., Fang, L., Yue, H., Zhou, S., & Su, Y. (2022). Seismological Characterization of the 2021 Yangbi foreshock-mainshock sequence Yunnan China: more than a triggered cascade. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2022JB024534

    Article  Google Scholar 

  • Zhu, G., Yang, H., Tan, Y., Jin, M., Li, X., & Yang, W. (2022). The cascading foreshock sequence of the Ms 6.4 Yangbi earthquake in Yunnan China. Earth and Planetary Science Letters., 591, 117594.

    Google Scholar 

  • Zhu, S., & Shi, Y. (2005). Genetic algorithm-finite element inversion of topographic spreading forces and drag forces of lower crust to upper crust in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis PeKinensis, 41(2), 225–234.

    Google Scholar 

  • Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: The World Stress Map project. Journal of Geophysical Research, 97(B8), 11703–11728.

    Google Scholar 

Download references

Acknowledgements

We thank the Crustal Movement Observation Network of China (CMONOC I) and the Tectonic and Environmental Observation Network of Mainland China (CMONOC II) for providing the GNSS observations. We are grateful to Professors Yanqiang Wu and Shuzhong Sheng for their helpful advice. We thank Professor Yongge Wan for providing the procedure for the simulation of the relationship between the stress regimes and focal mechanism.

Funding

This study was supported by the National Natural Science Foundation of China (nos. 41974011, 42204093) and the Earthquake Tracking Task of the China Earthquake Administration (2020010223).

Author information

Authors and Affiliations

Authors

Contributions

LL and WZ designed the research, analyzed the results, and wrote the manuscript. LL was also responsible for the validation, formal analysis, investigation, and the writing-original draft. CC and JZ performed the GPS data processing. JZ calculated the GNSS strain time series. XL participated in the creation of the graphics.

Corresponding author

Correspondence to Layue Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhan, W., Chen, C. et al. Stress-Strain Characteristics Before the 2021 Ms 6.4 Yangbi Earthquake in Yunnan Province, China, and Implications for the Seismogenic Mechanism. Pure Appl. Geophys. 180, 2543–2559 (2023). https://doi.org/10.1007/s00024-023-03314-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03314-x

Keywords

Navigation