Skip to main content
Log in

A Gene-Random Forest Model for Meteorological Drought Prediction

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The evolution of ensemble learning has recently offered a new approach to model complex systems. Inspired by the success of such methods, this paper introduces a new ensemble approach that integrates capabilities of two top state-of-the-art machine learning (ML) methods, namely random forests (RF) and genetic programming (GP), to model and forecast meteorological drought onset and severity. The new method, called gene-random forest (GeRF), follows the same steps of a standard GP systems, but with differences in the generation of initial population of potential solutions. The GeRF was tested to model and predict standardized precipitation evapotranspiration indices (SPEI-3 and SPEI-6) at two meteorology stations in Ankara province, Turkey. We have compared its efficiency to those of a classic autoregressive model as well as standalone RF, GP, and a hybrid ML model, called Bat-ELM, achieving results meaningfully superior to the benchmarks, particularly in the testing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AghaKouchak, A., Pan, B., Mazdiyasni, O., Sadegh, M., Jiwa, S., Zhang, W., & Sorooshian, S. (2022). Status and prospects for drought forecasting: opportunities in artificial intelligence and hybrid physical–statistical forecasting. Philosophical Transactions of the Royal Society A, 380(2238), 20210288.

    Article  Google Scholar 

  • Aghelpour, P., Mohammadi, B., Mehdizadeh, S., Bahrami-Pichaghchi, H., & Duan, Z. (2021). A novel hybrid dragonfly optimization algorithm for agricultural drought prediction. Stochastic Environmental Research and Risk Assessment, 35(12), 2459–2477.

    Article  Google Scholar 

  • Ahmadi, F., Mehdizadeh, S., & Mohammadi, B. (2021). Development of bio-inspired-and wavelet-based hybrid models for reconnaissance drought index modeling. Water Resources Management, 35(12), 4127–4147.

    Article  Google Scholar 

  • Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2020, April). Hessian complexity measure for genetic programming-based imputation predictor selection in symbolic regression with incomplete data. In: European Conference on Genetic Programming (Part of EvoStar) (pp. 1–17). Springer, Cham

  • Alizamir, M., Heddam, S., Kim, S., & Mehr, A. D. (2021). On the implementation of a novel data-intelligence model based on extreme learning machine optimized by bat algorithm for estimating daily chlorophyll-a concentration: case studies of river and lake in USA. Journal of Cleaner Production, 285, 124868.

    Article  Google Scholar 

  • Beyaztas, U., & Yaseen, Z. M. (2019). Drought interval simulation using functional data analysis. Journal of Hydrology, 579, 124141.

    Article  Google Scholar 

  • Belayneh, A., Adamowski, J., Khalil, B., & Ozga-Zielinski, B. (2014). Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology, 508, 418–429.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58.

    Article  Google Scholar 

  • Danandeh Mehr, A. (2021). Drought classification using gradient boosting decision tree. Acta Geophysica, 69, 909–918.

    Article  Google Scholar 

  • Danandeh Mehr, A., Kahya, E., & Özger, M. (2014). A gene-wavelet model for long lead time drought forecasting. Journal of Hydrology, 517, 691–699.

    Article  Google Scholar 

  • Danandeh Mehr, A., & Vaheddoost, B. (2020). Identification of the trends associated with the SPI and SPEI indices across Ankara, Turkey. Theoretical and Applied Climatology, 139(3), 1531–1542.

    Article  Google Scholar 

  • Deo, R. C., Tiwari, M. K., Adamowski, J. F., & Quilty, J. M. (2017). Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stochastic Environmental Research and Risk Assessment, 31(5), 1211–1240.

    Article  Google Scholar 

  • Dong, L., Zeng, W., Wu, L., Lei, G., Chen, H., Srivastava, A. K., & Gaiser, T. (2021). Estimating the pan evaporation in Northwest China by coupling CatBoost with Bat algorithm. Water, 13(3), 256.

    Article  Google Scholar 

  • Fernando, T. M. K. G., Maier, H. R., & Dandy, G. C. (2009). Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach. Journal of Hydrology, 367(3–4), 165–176.

    Article  Google Scholar 

  • Gholizadeh, R., Yılmaz, H., & Danandeh Mehr, A. (2022). Multitemporal meteorological drought forecasting using Bat-ELM. Acta Geophysica, 70(2), 917–927.

    Article  Google Scholar 

  • Han, Y., Wu, J., Zhai, B., Pan, Y., Huang, G., Wu, L., & Zeng, W. (2019). Coupling a bat algorithm with xgboost to estimate reference evapotranspiration in the arid and semiarid regions of China. Advances in Meteorology, 2019, 1–16.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., Jacob, D., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., ... & Zougmoré, R. B. (2018). Impacts of 1.5 °C global warming on natural and human systems. In: Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & T Waterfield (eds) , Global warming of 1.5 °C. : An IPCC Special Report. IPCC Secretariat, pp. 175–311. http://hdl.handle.net/10138/311749

  • Jagadeesh, B., & Sree, D. V. V. (2022). Detection and recognition of traffic sign boards using random forest classifier. Review of Computer Engineering Research, 9(3), 135–149. https://doi.org/10.18488/76.v9i3.3109

    Article  Google Scholar 

  • Karbassi, A., Maghrebi, M., Noori, R., Lak, R., & Sadrinasab, M. (2020). Investigation of spatiotemporal variation of drought in Iran during the last five decades. Desert, 25(2), 213–226.

    Google Scholar 

  • Khan, M. M. H., Muhammad, N. S., & El-Shafie, A. (2020). Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting. Journal of Hydrology, 590, 125380.

    Article  Google Scholar 

  • Kisi, O., Gorgij, A. D., Zounemat-Kermani, M., Mahdavi-Meymand, A., & Kim, S. (2019). Drought forecasting using novel heuristic methods in a semi-arid environment. Journal of Hydrology, 578, 124053.

    Article  Google Scholar 

  • Li, J., Wang, Z., Wu, X., Xu, C. Y., Guo, S., Chen, X., & Zhang, Z. (2021). Robust meteorological drought prediction using antecedent SST fluctuations and machine learning. Water Resources Research, 57(8), e2020WR029413.

    Article  Google Scholar 

  • Mehdizadeh, S., Ahmadi, F., Mehr, A. D., & Safari, M. J. S. (2020). Drought modeling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 587, 125017.

    Article  Google Scholar 

  • Mehr, A. D. (2021). Seasonal rainfall hindcasting using ensemble multi-stage genetic programming. Theoretical and Applied Climatology, 143(1), 461–472.

    Article  Google Scholar 

  • Mehr, A. D., Tur, R., Çalışkan, C., & Tas, E. (2020). A novel fuzzy random forest model for meteorological drought classification and prediction in ungauged catchments. Pure and Applied Geophysics, 177(12), 5993–6006.

    Article  Google Scholar 

  • Mishra, A. K., & Desai, V. R. (2005). Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5), 326–339.

    Article  Google Scholar 

  • Morid, S., Smakhtin, V., & Bagherzadeh, K. (2007). Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(15), 2103–2111.

    Article  Google Scholar 

  • Özger, M., Mishra, A. K., & Singh, V. P. (2011). Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in Texas. Journal of Hydrometeorology, 13, 284–297. https://doi.org/10.1175/jhm-d-10-05007.1

    Article  Google Scholar 

  • Park, H., Kim, K., & Lee, D. (2019). Prediction of severe drought area based on random forest: using satellite image and topography data. Water, 11(4), 705.

    Article  Google Scholar 

  • Prodhan, F. A., Zhang, J., Hasan, S. S., Sharma, T. P. P., & Mohana, H. P. (2022). A review of machine learning methods for drought hazard monitoring and forecasting: current research trends, challenges, and future research directions. Environmental Modelling & Software, 149, 105327.

    Article  Google Scholar 

  • Rahmani-Rezaeieh, A., Mohammadi, M., & Danandeh Mehr, A. (2020). Ensemble gene expression programming: a new approach for evolution of parsimonious streamflow forecasting model. Theoretical and Applied Climatology, 139(1), 549–564.

    Article  Google Scholar 

  • Rezaie-Balf, M., Fani Nowbandegani, S., Samadi, S. Z., Fallah, H., & Alaghmand, S. (2019). An ensemble decomposition-based artificial intelligence approach for daily streamflow prediction. Water, 11(4), 709.

    Article  Google Scholar 

  • Silva, S., & Almeida, J.: GPLAB a genetic programming toolbox for MATLAB (2007). http://gplab.sourceforge.net/index.html

  • Song, X., Song, Y., & Chen, Y. (2020). Secular trend of global drought since 1950. Environmental Research Letters, 15(9), 094073.

    Article  Google Scholar 

  • Tirivarombo, S., Osupile, D., & Eliasson, P. (2018). Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Physics and Chemistry of the Earth, Parts A/B/C, 106, 1–10.

    Article  Google Scholar 

  • Vaheddoost, B., & Safari, M. J. S. (2021). Application of signal processing in tracking meteorological drought in a mountainous region. Pure and Applied Geophysics, 178, 1943–1957.

    Article  Google Scholar 

  • van der Wiel, K., Wanders, N., Selten, F. M., & Bierkens, M. F. P. (2019). Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophysical Research Letters, 46, 2093–2102.

    Article  Google Scholar 

  • Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. J., Teuling, A. J., & Uijlenhoet, R. (2014). How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), 4640–4656.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696–1718.

    Article  Google Scholar 

  • Wallis, J. R., & Matalas, N. C. (1971). Correlogram analysis revisited. Water Resources Research, 7(6), 1448–1459.

    Article  Google Scholar 

  • Yaseen, Z. M., Ali, M., Sharafati, A., Al-Ansari, N., & Shahid, S. (2021). Forecasting standardized precipitation index using data intelligence models: regional investigation of Bangladesh. Scientific Reports, 11(1), 1–25.

    Article  Google Scholar 

  • Zounemat-Kermani, M., Batelaan, O., Fadaee, M., & Hinkelmann, R. (2021). Ensemble machine learning paradigms in hydrology: a review. Journal of Hydrology, 598, 126266.

    Article  Google Scholar 

Download references

Funding

The authors have received no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Danandeh Mehr.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danandeh Mehr, A. A Gene-Random Forest Model for Meteorological Drought Prediction. Pure Appl. Geophys. 180, 2927–2937 (2023). https://doi.org/10.1007/s00024-023-03283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03283-1

Keywords

Navigation