Skip to main content
Log in

Epistemic Uncertainty in PSHA and Seismic Hazard Characterization Using the Logic Tree Approach: Part I, Developing the Framework

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Epistemic uncertainty offers alternatives on decision making and various possibilities of computing the hazard integral. Generally, the logic tree approach is used while treating the epistemic uncertainty. Logic tree weight calculation is a subjective decision based on the degree of belief of the analyst on the possible contributors to the epistemic uncertainty and often leads to a different set of values by different researchers. This paper aims to develop a framework of accounting for the epistemic uncertainty in probabilistic seismic hazard analysis (PSHA) by minimizing the subjectivity involved in weight calculation. Guidelines/rules are developed for the weight calculation at each node of the logic tree. Recurrence parameters, magnitude and distance probability distributions, maximum magnitude, and selection of ground motion predictive equations (GMPEs) are considered the possible sources of epistemic uncertainty. A GMPE rule is proposed to be used with the PSHA framework to account for the propagation of epistemic uncertainty. The north-east region of India is chosen for the purpose of illustration. The study region is divided into seven seismic source zones (five in the active crustal region and two in the subduction zone). Seismic hazard is characterized in terms of the weighted mean and fractile representation of hazards using the logic tree approach. Only one sample illustration of the results are reported in terms of weighted mean and fractile representation of hazard curves and uniform hazard spectra (UHS). Further illustration of the PSHA results with possible implications from the epistemic uncertainty is reported in the companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

Data may be available from the corresponding author through making reasonable request.

Code Availability

Custom code is developed in MATLAB environment and not available for sharing.

Abbreviations

\(Vs_{30}\) :

Average shear wave velocity in top 30 m

\(a\) :

Gutenberg-Richter recurrence relation parameter (y-intercept)

\(b\) :

Gutenberg-Richter recurrence relation parameter (slope)

\(L\) :

Total number of source zones

\(q\) :

\(q^{{{\text{th}}}}\) Source zone

\(a_{q}\) :

Number of possible candidates for GMPE in \(q^{{{\text{th}}}}\) source zone (finally selected for PSHA)

\(b_{m}\) :

Number of possible rules used while defining the maximum magnitude

\(c\) :

Number of possible rules used to define the probability distribution of magnitudes

\(d\) :

Number of possible recurrence relations that may define the seismicity

\(e_{r}\) :

Number of possible rules used to define the probability distribution of source-to-site distance

\(N\) :

Number of ERFs

\(u\) :

\(u^{{{\text{th}}}}\) SERF

\(p\) :

\(p^{{{\text{th}}}}\) ERF

\(m\) :

Earthquake magnitude (realization)

r:

Source to site distance (realization)

\(v\) :

\(v^{{{\text{th}}}}\) GMPE

\(N_{{{\text{GMPE}}}}\) :

Total number of GMPEs considered

\(N_{{{\text{MHC}}}}\) :

Total number of model hazard curves

\(T^{ * }\) :

Specified or conditional time period

\(Sa\) :

Spectral acceleration

\(Sa^{ * }\) :

Given hazard level or specified spectral acceleration

\(\lambda\) :

Mean annual rate

\(P( \cdot )\) :

Probability (CDF)

\(Rup_{k}\) :

\(k^{{{\text{th}}}}\) Causal rupture scenario

\(\ln\) :

Natural logarithm

\(GMPE_{j}\) :

\(j^{{{\text{th}}}}\) GMPE

\(N_{q}\) :

Number of candidates GMPE for the \(q^{{{\text{th}}}}\) source zone screened through the criteria of Bommer et al. (2010)

\(w_{iq}\) :

Associated weight for \(i^{{{\text{th}}}}\) GMPE (out of \(N_{q}\)) in the \(q^{{{\text{th}}}}\) source zone

\(\overline{w}_{jq}\) :

Normalized weight for \(j^{{{\text{th}}}}\) GMPE (out of \(a_{q}\)) in the \(q^{{{\text{th}}}}\) source zone

\(s_{q}\) :

Standard deviation of weights \(\left( {w_{iq} ;\,i = 1,N_{q} } \right)\) in the \(q^{{{\text{th}}}}\) source zone

\(w_{q}\) :

Weight assigned to the \(q^{{{\text{th}}}}\) source zone

\(w_{{{\text{SERF}}}}\) :

Weight associated with any typical SERF

\(w_{{{\text{ERF}}}}\) :

Weight of the defining ERF

\(w_{{{\text{MHC}}}}\) :

Weight associated with any typical MHC

\(\lambda_{k}\) :

\(k^{{{\text{th}}}}\) Realization of the rate

\(z\) :

\(z^{{{\text{th}}}}\) Fractile

\(R_{jb}\) :

Joyner-Boore distance (source to site)

\(R_{epi}\) :

Epicentral distance (source to site)

\(R_{hypo}\) :

Hypocentral distance (source to site)

\(R_{rup}\) :

Rupture distance (source to site)

\(X\) :

Observed sample dataset

\(x_{k}\) :

\(k^{{{\text{th}}}}\) Realization of the observed sample data set \(\left( {k = 1,n} \right)\)

\(M_{k}\) :

Magnitude associated with \(k^{{{\text{th}}}}\) realization of the observed sample data set

\(R_{k}\) :

Source to site distance associated with \(k^{{{\text{th}}}}\) realization of the observed sample data set

\(T_{k}\) :

Time period associated with \(k^{{{\text{th}}}}\) realization of the observed sample data set

\(\overline{Y}_{k}\) :

Median of the intensity measure from GMPE for \(k^{{{\text{th}}}}\) triplet of (M-R-T)

\(\sigma_{k}\) :

Logarithmic dispersion of the intensity measure from GMPE for \(k^{{{\text{th}}}}\) triplet of (M-R-T)

\(p( \cdot )\) :

Probability mass function

\(f( \cdot )\) :

Probability density function

\(\pi\) :

Pi

\(e\) :

Exponential

\(dx\) :

Small interval of \(x\)

\(B\) :

Base of the logarithm

\(\log_{B}\) :

Logarithm with base \(B\)

\({\text{LLH}}_{iq}\) :

Log-likelihood of \(i^{{{\text{th}}}}\) GMPE (out of \(N_{q}\)) in the \(q^{{{\text{th}}}}\) source zone

\(\lambda_{m}\) :

Mean annual rate of exceedance of magnitude \(m\)

\(T_{c}\) :

Total period of a catalogue

\(s\) :

Total number of magnitude intervals or sub-catalogues

\(T_{m}^{s}\) :

Completion period in years from recent associated with \(s^{{{\text{th}}}}\) magnitude interval

\(T_{s}\) :

Duration of \(s^{{{\text{th}}}}\) sub-catalogue

\(m_{\min }^{s}\) :

Minimum magnitude of completeness of \(s^{{{\text{th}}}}\) sub-catalogue

\(n_{s}\) :

Total number of events in \(s^{{{\text{th}}}}\) sub-catalogue

\(m_{{n_{i} }}^{i}\) :

Magnitude of \(n^{{{\text{th}}}}\) event in \(i^{{{\text{th}}}}\) sub-catalogue

\(\beta\) :

Gutenberg-Richter recurrence relation parameter \(\left[ {\beta = b\ln \left( {10} \right)} \right]\)

\(L( \cdot )\) :

Likelihood function

\(\hat{\beta }\) :

Estimated Gutenberg-Richter recurrence relation parameter

\(\overline{m}^{i}\) :

Mean magnitude of \(i^{{{\text{th}}}}\) sub-catalogue

\(r_{i}\) :

Ratio of number of events in \(i^{{{\text{th}}}}\) sub-catalogue to the total number of events in the catalogue \(\left( {{{n_{i} } \mathord{\left/ {\vphantom {{n_{i} } {N_{c} }}} \right. \kern-\nulldelimiterspace} {N_{c} }}} \right)\)

\(\hat{N}_{i}\) :

Estimated total number of events in \(i^{{{\text{th}}}}\) sub-catalogue between \(m_{\min }^{i}\) to \(m_{\max }\)

\(N_{c}\) :

Total number of events in the catalogue

\(\hat{N}\) :

Estimated total number of events in the catalogue

\(m_{\min }\) :

Minimum magnitude of the catalogue

\(m_{\max }\) :

Maximum magnitude of the catalogue

\(m_{\max }^{obs}\) :

Maximum observed magnitude of the catalogue

\(\hat{\lambda }_{{m_{\min } }}\) :

Estimated mean annual rate of exceedance of minimum magnitude

\(N_{m}^{k}\) :

Number of events in \(k^{{{\text{th}}}}\) magnitude interval, within completion period \(\left( {T_{m}^{k} } \right)\)

\(\lambda^{{{\text{obs}}}}\) :

Observed mean annual rate of exceedance

\(E_{SL}^{q}\) :

Mean squared error in the estimation of mean annual rate of exceedance by straight line fitting method in \(q^{{{\text{th}}}}\) source zone

\(\lambda^{{k,{\text{obs}}}}\) :

Observed mean annual rate of exceedance in \(k^{{{\text{th}}}}\) magnitude interval

\(\hat{\lambda }_{m}^{k,SL}\) :

Estimated mean annual rate of exceedance in \(k^{{{\text{th}}}}\) magnitude interval by straight line fitting method

\(E_{LLh}^{q}\) :

Mean squared error in the estimation of mean annual rate of exceedance by Log-likelihood method in \(q^{{{\text{th}}}}\) source zone

\(\hat{\lambda }_{m}^{k,LLH}\) :

Estimated mean annual rate of exceedance in \(k^{{{\text{th}}}}\) magnitude interval by log-likelihood method

\(E_{LLH}\) :

Mean squared error in the estimation of mean annual rate of exceedance by log-likelihood method over all the source zones

\(E_{SL}\) :

Mean squared error in the estimation of mean annual rate of exceedance by straight-line fitting method over all the source zones

\(\theta\) :

Slope

\(W_{SL}\) :

Associated weight of straight-line fitting method

\(W_{LLH}\) :

Associated weight of log-likelihood method

\(Mw\) :

Moment magnitude

\(R^{2}\) :

Goodness-of-fit measure

\(M\) :

Earthquake magnitude as random variable

\(dm_{i}\) :

Small interval (delta) of earthquake magnitude

\(H( \cdot )\) :

Heaviside step function

\(\delta ( \cdot )\) :

Dirac delta function

\(n\) :

Sample data set of events

\(W_{{g_{j} }}\) :

Associated weight of \(j^{{{\text{th}}}}\) recurrence relation model

\(\hat{m}_{\max }\) :

Estimated maximum magnitude

\(\hat{m}_{\max }^{2}\) :

Estimated maximum magnitude by second method

\(L_{f}\) :

Fault length

\(L_{0}\) :

Extended fault length up to perpendicular line to the fault from the site

\(X\left( m \right)\) :

Fault rupture length as a function of the earthquake magnitude

\(D\) :

Perpendicular distance between source (fault line) and the site

\(R_{\min }\) :

Minimum source-to-site distance

\(R_{\max }\) :

Maximum source-to-site distance

\(R\) :

Source to site distance as random variable

\(N_{sc}\) :

Total sample count

\(W_{f\left( r \right)}\) :

Weight associated with distance probability distribution

\(C_{\beta }\) :

Normalizing coefficient

\(p_{G}\) :

Gamma distribution parameter

\(q_{G}\) :

Gamma distribution parameter

\(\sigma_{{\hat{\beta }}}\) :

Standard deviation of estimated Gutenberg-Richter recurrence relation parameter

\(L_{f}^{j}\) :

Length of \(j^{{{\text{th}}}}\) fault

\(m_{\max }^{j}\) :

Expected maximum magnitude associated with \(j^{{{\text{th}}}}\) fault

\(m_{0}\) :

Factored maximum magnitude

\(L_{f}^{\max }\) :

Maximum fault length in a source zone

\(L_{f}^{{{\text{median}}}}\) :

Median length of all the faults in a source zone

\(W_{{\hat{m}_{\max }^{l} }}\) :

Weight associated with \(l^{{{\text{th}}}}\) method of estimating maximum magnitude

\(N_{S}\) :

Number of potential earthquake sources in a region around the site

\(N_{M}\) :

Number of discrete magnitude segments considered

\(N_{R}\) :

Number of discrete distance segments considered

\(\nu_{i}\) :

Mean annual rate of exceedance of events greater than certain magnitude in \(i^{{{\text{th}}}}\) source

\(\Delta m\) :

Size of a discrete magnitude segment

\(g\) :

Gravitational acceleration (9.81 \({m \mathord{\left/ {\vphantom {m {\sec^{2} }}} \right. \kern-\nulldelimiterspace} {\sec^{2} }}\))

\(\Delta r\) :

Size of a discrete distance segment

\(\lambda_{IM}\) :

Mean annual rate of exceedance associated with IM- Hazard curve

\(\lambda_{{{\text{Rate}}}}\) :

Mean annual rate of exceedance associated with Rate- Hazard curve

\(Sa_{IM}\) :

Hazard level (Spectral acceleration) associated with IM- Hazard curve

\(Sa_{{{\text{Rate}}}}\) :

Hazard level (Spectral acceleration) associated with Rate- Hazard curve

PSHA:

Probabilistic seismic hazard analysis

GMPE:

Ground motion predictive equation

UHS:

Uniform hazard spectra

1D:

One dimensional

MECE:

Mutually exclusive and collectively exhaustive

LLH:

Log-likelihood

SSHAC:

Senior Seismic Hazard Analysis Committee

USNRC:

United States Nuclear Regulatory Commission

CBR:

Center, body, and range

TDI:

Technically defensible interpretations

MCE:

Maximum considered earthquake

DBE:

Design basis earthquake

NEHRP:

National earthquake hazard reduction program

ERF:

Earthquake rupture forecast

SERF:

Sub-earthquake rupture forecast

MHC:

Model hazard curve

IM, im:

Intensity measure

ACR:

Active crustal region

SZ:

Subduction zone

SL:

Straight line

GR:

Gutenberg-Richter

MB:

Main and Burton

EDP:

Engineering demand parameter

CDF:

Cumulative distribution function

z-UHS:

Z-fractile representation of uniform hazard spectrum

10PE50:

10% Probability of exceedance in 50 years

2PE50:

2% Probability of exceedance in 50 years

GMRotI50:

50th percentile (median) orientation or rotation independent geometric mean intensity measure

RotD50:

50th percentile (median) orientation or rotation dependent intensity measure

km:

Kilometer

CFVB15:

GMPE by Cauzzi and Faccioli (2015)

SDBK09:

GMPE by Sharma et al. (2009)

KNMF06:

GMPE by Kanno et al. (2006)

ASB14:

GMPE by Akkar et al. (2014)

OZBE04:

GMPE by Özbey et al. (2004)

ZHAO16c:

GMPE by Zhao et al. (2016)

ZHAO06:

GMPE by Zhao et al. (2006)

ASK14:

GMPE by Abrahamson et al. (2014)

IDRI14:

GMPE by Idriss (2014)

BSSA14:

GMPE by Boore et al. (2014)

CB14:

GMPE by Campbell and Bozorgnia (2014)

CY14:

GMPE by Chiou and Youngs (2014)

MZAS06:

GMPE by McVerry et al. (2006)

NATH12:

GMPE by Nath et al. (2012)

ANBA13:

GMPE by Anbazhagan et al. (2013)

GUPTA10:

GMPE by Gupta (2010)

YOUNG97:

GMPE by Youngs et al. (1997)

BCHY16:

GMPE by Abrahamson et al. (2016)

ZHAO16:

GMPE by Zhao et al. (2016)

ATBO03:

GMPE by Atkinson and Boore (2003)

LNLE08:

GMPE by Lin and Lee (2008)

ARRO10:

GMPE by Arroyo et al. (2010)

NDMA10:

GMPE from National disaster management authority report (2010)

SZ2:

Second source zone in subduction zone

ACR5:

5th source zone in active crustal region

PDF:

Probability density function

PGA:

Peak ground acceleration

CS:

Conditional spectra

GCR:

Generalized causal rupture

GCIM:

Generalized conditional intensity measure

References

  • Abrahamson, Norman A., (2000). State of The Practice of Seismic Hazard Evaluation. Paper presented at the ISRM International Symposium, Melbourne, Australia

  • Abrahamson, N. A., & Bommer, J. J. (2005). Probability and uncertainty in seismic hazard analysis. Earthquake Spectra, 21, 603–607.

    Article  Google Scholar 

  • Abrahamson, N., Gregor, N., & Addo, K. (2016). BC Hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra, 32(1), 23–44.

    Article  Google Scholar 

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055.

    Article  Google Scholar 

  • Akkar, S., Sandıkkaya, M. A., & Bommer, J. J. (2014). Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of Earthquake Engineering, 12(1), 359–387.

    Article  Google Scholar 

  • Anbazhagan, P., Bajaj, K., Matharu, K., Moustafa, S. S. R., & Al-Arifi, N. S. N. (2019). Probabilistic seismic hazard analysis using the logic tree approach—Patna district (India). Natural Hazards and Earth Systems Sciences, 19, 2097–2115.

    Article  Google Scholar 

  • Anbazhagan, P., Kumar, A., & Sitharam, T. G. (2013). Ground motion prediction equation considering combined dataset of recorded and simulated ground motions. Soil Dynamics and Earthquake Engineering, 53, 92–108.

    Article  Google Scholar 

  • Anbazhagan, P., Sreenivas, M., Ketan, B., Moustafa, S. S. R., & Al-Arifi, N. S. N. (2016). Selection of ground motion prediction equations for seismic hazard analysis of Peninsular India. Journal of Earthquake Engineering, 20, 699–737.

    Article  Google Scholar 

  • Anderson, J. G. (2018). Quantifying the epistemic uncertainty in the probabilistic seismic hazard from two major faults in Western Nevada. Earthquake Spectra, 34, 549–568.

    Article  Google Scholar 

  • Arroyo, D., García, D., Ordaz, M., Mora, M. A., & Singh, S. K. (2010). Strong ground-motion relations for Mexican interplate earthquakes. Journal of Seismology, 14(4), 769–785.

    Article  Google Scholar 

  • Atkinson, G. M., Bommer, J. J., & Abrahamson, N. A. (2014). Alternative approaches to modeling epistemic uncertainty in ground motions in probabilistic seismic-hazard analysis. Seismological Research Letters, 85(6), 1141–1144.

    Article  Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to cascadia and other regions. Bulletin of the Seismological Society of America, 93(4), 1703–1729.

    Article  Google Scholar 

  • Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fäh, D. (2010). On the selection of ground-motion prediction equations for seismic hazard analysis. Seismological Research Letters, 81(5), 783–793.

    Article  Google Scholar 

  • Bommer, J. J., & Scherbaum, F. (2008). The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthquake Spectra, 24(4), 997–1009.

    Article  Google Scholar 

  • Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic trees for ground motion prediction equations in seismic hazard assessment. Bulletin of the Seismological Society of America, 95(2), 377–389.

    Article  Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5 damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.

    Article  Google Scholar 

  • Bradley, B. A. (2009). Seismic hazard epistemic uncertainty in the San Francisco bay area and its role in performance-based assessment. Earthquake Spectra, 25(4), 733–753.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5 damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1115.

    Article  Google Scholar 

  • Cauzzi, C., Faccioli, E., Vanini, M., & Bianchini, A. (2015). Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records. Bull Earthquake Engineering, 13(6), 1587–1612.

    Article  Google Scholar 

  • Chiou, B.S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153.

    Article  Google Scholar 

  • Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target applications: applications to Central Europe and rock sites. Journal of Seismology, 10(2), 137–156.

    Article  Google Scholar 

  • Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C., Drouet, S., Douglas, J., Basili, R., Sandikkaya, M. A., Segou, M., Faccioli, E., & Theodoulidis, N. (2012). Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology, 16, 451–473.

    Article  Google Scholar 

  • Der Kiureghian, A., & Ang, A.H.-S. (1977). A fault rupture model for seismic risk analysis. Bulletin of the Seismological Society of America, 67, 1173–1194.

    Google Scholar 

  • Der Kiureghian, A., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural Safety, 31(2), 105–112.

    Article  Google Scholar 

  • Douglas, J., (2020). Ground motion prediction equations 1964-2020. http://www.gmpe.org.uk. Assessed 1 Oct 2020.

  • Grünthal, G., Stromeyer, D., Bosse, C., Cotton, F., & Bindi, D. (2018). The probabilistic seismic hazard assessment of Germany—version 2016, considering the range of epistemic uncertainties and aleatory variability. Bull Earthquake Eng, 16, 4339–4395.

    Article  Google Scholar 

  • Gupta, I. D. (2002). The state-of-the-art in seismic hazard analysis. ISET Journal Earthquake Technological, 39(4), 311–346.

    Google Scholar 

  • Gupta, I. D. (2010). Response spectral attenuation relations for in-slab earthquakes in Indo-Burmese subduction zone. Soil Dynamics and Earthquake Engineering, 30(5), 368–377.

    Article  Google Scholar 

  • Gurjar, N., & Basu, D. (2022). Epistemic uncertainty in PSHA and seismic hazard characterization using logic tree approach: Part II-Implementation over North-East India. Pure and Applied Geophysics (Companion Paper-II; Accepted 3 September 2022)

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Article  Google Scholar 

  • Idriss, I. M. (2014). An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 30(3), 1155–1177.

    Article  Google Scholar 

  • Iyengar, R. N. and Ghosh, S., (2004). Seismic hazard mapping of Delhi city. 13th world conference on Earthquake Engineering Canada, Paper No. 180.

  • Kaklamanos, J., Baise, L. G., & Boore, D. M. (2011). Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27, 1219–1235.

    Article  Google Scholar 

  • Kalakonas, P., Silva, V., Mouyiannou, A., & Rao, A. (2020). Exploring the impact of epistemic uncertainty on a regional probabilistic seismic risk assessment model. Natural Hazards, 104, 997–1020.

    Article  Google Scholar 

  • Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., & Fukushima, Y. (2006). A new attenuation relation for strong ground motion in Japan based on recorded data. Bulletin of the Seismological Society of America, 96(3), 879–897.

    Article  Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59, 674–700.

    Article  Google Scholar 

  • Kijko, A., & Smit, A. (2012). Extension of the Aki-Utsu b-value estimator for incomplete catalogs. Bulletin of the Seismological Society of America, 102, 1283–1287.

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hall.

    Google Scholar 

  • Kulkarni, R. B., Youngs, R. R., and Coppersmith, K. J., (1984). Assessment of confidence intervals for results of seismic hazard analysis. In Proceedings, Eighth World Conference on Earthquake Engineering, vol. 1, San Francisco, pp. 263–270.

  • Lin, P. S., & Lee, C. T. (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1), 220–240.

    Article  Google Scholar 

  • Main, I. G., & Burton, P. W. (1984). Information theory and the earthquake frequency-magnitude distribution. Bulletin of the Seismological Society of America, 74, 1409–1426.

    Google Scholar 

  • Marzocchi, W., Taroni, M., & Selva, J. (2015). Accounting for epistemic uncertainty in PSHA: Logic tree and ensemble modeling. Bulletin of the Seismological Society of America, 105(4), 2151–2159.

    Article  Google Scholar 

  • McGuire, R. K., Cornell, C. A., & Toro, G. R. (2005). The case for the mean hazard curve. Earthquake Spectra, 21, 879–886.

    Article  Google Scholar 

  • McVerry G. H., J. X. Zhao, N. A. Abrahamson, and P. G. Somerville, (2006). New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes. Bulletin of the New Zealand Society for Earthquake Engineering, vol. 39, no. 1, Art. No. 1.

  • Musson, R. M. W. (2005). Against fractiles. Earthquake Spectra, 21, 887–891.

    Article  Google Scholar 

  • Nath, S. K., Thingbaijam, K. K. S., Maiti, S. K., & Nayak, A. (2012). Ground-motion predictions in Shillong region, northeast India. Journal of Seismology, 16(3), 475–488.

    Article  Google Scholar 

  • NDMA, (2010). Development of probabilistic seismic hazard map of india. Technical report by National disaster management authority, Government of India, Delhi, India.

  • Özbey, C., Sari, A., Manuel, L., Erdik, M., & Fahjan, Y. (2004). An empirical attenuation relationship for Northwestern Turkey ground motion using a random effects approach. Soil Dynamics and Earthquake Engineering, 24(2), 115–125.

    Article  Google Scholar 

  • Petersen, Mark D., Frankel, Arthur D., Harmsen, Stephen C., Mueller, Charles S., Haller, Kathleen M., Wheeler, Russell L., Wesson, Robert L., Zeng, Yuehua, Boyd, Oliver S., Perkins, David M., Luco, Nicolas, Field, Edward H., Wills, Chris J., and Rukstales, Kenneth S., (2008). Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report–1128, 61 p.

  • Rodriguez-Marek, A., Bommer, J. J., Youngs, R. R., Crespo, M. J., Stafford, P. J., & Bahrampouri, M. (2021). Capturing epistemic uncertainty in site response. Earthquake Spectra, 37(2), 921–936.

    Article  Google Scholar 

  • Scherbaum, F., Delavaud, E., & Riggelsen, C. (2009). Model selection in seismic hazard analysis: An information-theoretic perspective. Bulletin of the Seismological Society of America, 99(6), 3234–3247.

    Article  Google Scholar 

  • Senior Seismic Hazard Analysis Committee (SSHAC), (1997). Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, U.S. Nuclear Regulatory Commission, U.S. Dept. of Energy, Electric Power Research Institute, NUREG/CR6372, UCRL-ID-122160, Vols. 1/2.

  • Sharma, M. L., Douglas, J., Bungum, H., & Kotadia, J. (2009). Ground-motion prediction equations based on data from the Himalayan and Zagros Regions. Journal of Earthquake Engineering, 13(8), 1191–1210.

    Article  Google Scholar 

  • Stepp J. C., (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proc. Of the 1st Int. Conf. on Microzonazion, Seattle, Vol. 2, pp. 897–910.

  • Stewart J.P., Douglas J., Javanbarg M.B., Di Alessandro C., Bozorgnia Y., Abrahamson N.A., Boore D.M., Campbell K.W., Delavaud E., Erdik M., and Stafford P.J. (2013). GEM-PEER Task 3 Project: Selection of a global set of ground motion prediction equations, PEER Report No. 2013/222, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.

  • Tavakoli, B., Sedaghati, F., & Pezeshk, S. (2018). An analytical effective point-source-based distance-conversion approach to mimic the effects of extended faults on seismic hazard assessment. Bulletin of the Seismological Society of America, 108, 742–760.

    Article  Google Scholar 

  • Tromans, I. J., Aldama-Bustos, G., Douglas, J., Lessi-Cheimariou, A., Hunt, S., Daví, M., Musson, R. M. W., Garrard, G., Strasser, F. O., & Robertson, C. (2019). Probabilistic seismic hazard assessment for a new-build nuclear power plant site in the UK. Bull Earthquake Engineering, 17, 1–36.

    Article  Google Scholar 

  • USNRC, (2018). Updated implementation guidelines for SSHAC hazard studies. NUREG-2213, October 2018. Washington, DC: US Nuclear Regulatory Commission.

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 1994(84), 974–1002.

    Google Scholar 

  • Wyss, M. (1979). Estimating maximum expectable magnitude of earthquakes from fault dimensions. Geology, 7(7), 336–340.

    Article  Google Scholar 

  • Yaghmaei-Sabegh, S., & Ebrahimi-Aghabagher, M. (2019). Quantification of source-to-site distance uncertainty in ground motion models. Natural Hazards, 99, 287–306.

    Article  Google Scholar 

  • Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attentuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73.

    Article  Google Scholar 

  • Zhao John X., Fei Jiang, Pan Shi, Hao Xing, Haifeng Huang, Ruibin Hou, Yingbin Zhang, Pengcheng Yu, Xiaowen Lan, David A. Rhoades, Paul G. Somerville, Kojiro Irikura, Yoshimitsu Fukushima, (2016a). Ground‐Motion Prediction Equations for Subduction Slab Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions. Bulletin of the Seismological Society of America. 106 (4): 1535–1551.

  • Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., & Fukushima, Y. (2006). Attentuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3), 898–913.

    Article  Google Scholar 

  • Zhao, J. X., Zhou, S., Zhou, J., Zhao, C., Zhang, H., Zhang, Y., Gao, P., Lan, X., Rhoades, D., Fukushima, Y., Somerville, P., & Irikura, K. (2016b). Ground-motion prediction equations for shallow crustal and upper-mantle earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4), 1552–1569.

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Ministry of Earth Sciences, Seismology Division, Government of India, under the Grant No. MoES/P.O.(Seismo)/1(370)/2019 and the financial support is acknowledged. We thank Prof. Andrzej Kijko for his insightful help in understanding the methods of calculating maximum magnitude and providing the required MATLAB codes. The authors greatly acknowledge the Geological Survey of India for providing Seismotectonic Atlas of North-east India used in this study. The authors also acknowledge the sources of seismic catalogues used in this study: International Seismological Centre, UK.; US Geological Survey; National Center for Seismology, India; and IRIS Data management centre, New York, USA.

Funding

This research is funded by the Ministry of Earth Sciences, Seismology Division, Government of India, under the Grant No. MoES/P.O.(Seismo)/1(370)/2019.

Author information

Authors and Affiliations

Authors

Contributions

DB proposed the idea, performed conceptual design, interpreted the results, prepared the revised draft, and managed the overall research. NG performed the analysis, developed the coding, processed the data, generated and interpreted results, written the original draft.

Corresponding author

Correspondence to Dhiman Basu.

Ethics declarations

Conflict of interest

Authors declare that the manuscript is free from any Conflicts of interest and Competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Supplementary file2 (DOCX 73 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurjar, N., Basu, D. Epistemic Uncertainty in PSHA and Seismic Hazard Characterization Using the Logic Tree Approach: Part I, Developing the Framework. Pure Appl. Geophys. 179, 3647–3676 (2022). https://doi.org/10.1007/s00024-022-03143-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03143-4

Keywords

Navigation