Skip to main content
Log in

Source Modeling of the 2009 Fengpin–Hualien Earthquake Sequence, Taiwan, Inferred From Static Strain Measurements

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We analyze high-resolution borehole strainmeter signals to constrain the fault plane solutions and locations of the 2009 Fengpin-Hualien earthquakes, in eastern Taiwan. The December \(M_w\) 6.6 earthquake has ruptured a narrow section of the Collision Seismic Zone (within depth of 34 to 44 km), an active structure located offshore northeast Taiwan. The October \(M_w\) 6.3 event has ruptured the deep section of the Longitudinal Valley fault (25–32 km depth) located between Fengpin and Fanglin. Coulomb stress changes induced by the October event in the hypocenter region of the December event are low (< +30 kPa), which suggests that the latter event was not induced by static stress transfer. The December event is characterized by an abundant seismicity for about 2.5 days following the mainshock. The temporal evolution between the aftershock rate and geodetic strain suggests that seismicity could have been controlled by a short-lived frictional afterslip. Besides, we infer that significant positive static Coulomb stress changes (> +100 kPa) induced by this sequence at shallow to moderate depths in the Longitudinal Valley (0–12 km) may have influenced the occurrence of large mainshocks in eastern Taiwan during the past decade. Conversely, limited stress (< +30 kPa) is transferred to the shallow, locked section of the southernmost Ryukyu trench. This study emphasizes the importance of borehole strain measurements in active regions to enhance detection of seismic and aseismic events unresolved by surface geodesy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ágústsson, K., Linde, A. T., Stefánsson, R., & Sacks, S. (1999). Strain changes for the 1987 Vatnafjöll earthquake in south Iceland and possible magmatic triggering. Journal of Geophysical Research, 104(B1), 1151–1161.

    Article  Google Scholar 

  • Barbour, A. J., Agnew, D. C., & Wyatt, F. K. (2015). Coseismic strains on Plate Boundary Observatory borehole strainmeters in Southern California. Bulletin of the Seismological Society of America, 105(1), 431–444.

    Article  Google Scholar 

  • Barrier, E., & Angelier, J. (1986). Active collision in eastern Taiwan: The Coastal Range. Tectonophysics, 125, 39–72.

    Article  Google Scholar 

  • Bernard, P., Boudin, F., Sacks, S., Linde, A., Blum, P. A., Courteille, C., et al., (2004). Continuous strain and tilt monitoring on the Trizonia island, Rift of Corinth, Greece. Comptes Rendus Geoscience, 336, 313–324.

    Article  Google Scholar 

  • Braitenberg, C. (1999). Estimating the hydrologic induced signal in geodetic measurements with predictive filtering method. Geophysical Research Letters, 26(6), 775–778.

    Article  Google Scholar 

  • Canitano, A., Bernard, P., Linde, A. T., & Sacks, S. (2013). Analysis of signals of a borehole strainmeter in the western rift of Corinth, Greece. Journal of Geodetic Science, 3(1), 63–76.

    Article  Google Scholar 

  • Canitano, A., Hsu, Y. J., Lee, H. M., Linde, A. T., & Sacks, S. (2015). Near-field strain observations of the October 2013 Ruisui, Taiwan, earthquake: Source parameters and limits of very-short term strain detection. Earth, Planets and Space, 67, 125. https://doi.org/10.1186/s40623-015-0284-1.

    Article  Google Scholar 

  • Canitano, A., Hsu, Y. J., Lee, H. M., Linde, A. T., & Sacks, S. (2018a). Calibration for the shear strain of 3-component borehole strainmeters in eastern Taiwan through Earth and ocean tidal waveform modeling. Journal of Geodesy, 92(3), 223–240.

    Article  Google Scholar 

  • Canitano, A., Godano, M., Hsu, Y. J., Lee, H. M., Linde, A. T., & Sacks, S. (2018b). Seismicity controlled by a frictional afterslip during a small magnitude seismic sequence (\(M_L\)\(<\) 5) on the Chihshang Fault. Taiwan. Journal of Geophysical Research: Solid Earth, 123(2), 2003–2018.

    Google Scholar 

  • Canitano, A., Gonzalez-Huizar, H., Hsu, Y. J., Lee, H. M., Linde, A. T., & Sacks, S. (2019). Testing the influence of static and dynamic stress perturbations on the occurrence of a shallow, slow slip event in eastern Taiwan. Journal of Geophysical Research: Solid Earth, 124(3), 3073–3087.

    Article  Google Scholar 

  • Canitano, A. (2020). Observation and theory of strain-infrasound coupling during ground-coupled infrasound generated by Rayleigh waves in the Longitudinal Valley (Taiwan). Bulletin of the Seismological Society of America, 110(6), 2991–3003.

    Article  Google Scholar 

  • Canitano, A., Mouyen, M., Hsu, Y. J., Linde, A. T., Sacks, S., & Lee, H. M. (2021a). Fifteen years of continuous high-resolution borehole strainmeter measurements in eastern Taiwan: an overview and perspectives. GeoHazards, 2(3), 172–195.

    Article  Google Scholar 

  • Canitano, A., Godano, M., & Thomas, M. Y. (2021b). Inherited state of stress as a key factor controlling slip and slip mode: inference from the study of a slow slip event in the Longitudinal Valley, Taiwan. Geophysical Research Letters, 48(3), https://doi.org/10.1029/2020GL090278.

  • Cao, Y., Mavroeidis, G. P., & Ashoory, M. (2018). Comparison of observed and synthetic near-fault dynamic ground strains and rotations from the 2004 \(M_w\) 6.0 Parkfield, California, earthquake. Bulletin of the Seismological Society of America, 108, 1240–1256.

    Article  Google Scholar 

  • Chen, K. C. (2003). Strong ground motion and damage in the Taipei basin from the Moho reflected seismic waves during the March 31, 2002, Hualien, Taiwan earthquake. GGeophysical Research Letters, 30(11). https://doi.org/10.1029/2003GL017193.

  • Chen, K. H., Toda, S., & Rau, R. J. (2008). A leaping, triggered sequence along a segmented fault: the 1951 \(M_L\) 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan. Geophysical Research Letters, 113(B2). https://doi.org/10.1029/2007JB005048.

  • Chen, K., Avouac, J. P., Aati, S., Milliner, C., Zheng, F., & Shi, C. (2020). Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nature Communications, 11, 22. https://doi.org/10.1038/s41467-019-1375-w.

    Article  Google Scholar 

  • Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research, 99(B2), 2601–2618.

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9.

    Article  Google Scholar 

  • Gonzalez-Huizar, H., & Velasco, A. A. (2011). Dynamic triggering: Stress modeling and a case study. Journal of Geophysical Research, 116, B02304. https://doi.org/10.1029/2009JB007000.

    Article  Google Scholar 

  • Hsu, Y. J., Ando, M., Yu, S. B., & Simons, M. (2012). The potential for a great earthquake along the southernmost Ryukyu subduction zone. Geophysical Research Letters, 39, L14302. https://doi.org/10.1029/2012GL052764.

    Article  Google Scholar 

  • Hsu, Y. J., Chang, Y. S., Liu, C. C., Lee, H. M., Linde, A. T., Sacks, S., et al., (2015). Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes. Journal of Geophysical Research Solid Earth, 120(6), 4556–4571.

    Article  Google Scholar 

  • Hsu, Y. F., Huang, H. H., Huang, M. H., Tsai, V. C., Chuang, R. Y., Feng, K. F., & Lin, S. H. (2020). Evidence for fluid migration during the 2016 Meinong, Taiwan, aftershock sequence. Journal of Geophysical Research Solid Earth, 125. https://doi.org/10.1029/2020JB019994.

  • Huang, H. H., Shyu, J. B. H., Wu, Y. M., Chang, C. H., & Chen, Y. G. (2012). Seismotectonics of northern Taiwan: Kinematics of the transition from waning collisision to subduction and postcollisional extension. Journal of Geophysical Research, 117, B01313. https://doi.org/10.1029/2011JB008852.

    Article  Google Scholar 

  • Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint V\(_p\) and V\(_s\) tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191.

    Article  Google Scholar 

  • Huang, M. H., & Huang, H. H. (2018). The complexity of the 2018 \(M_w\) 6.4 Hualien earthquake in East Taiwan. Geophysical Research Letters, 45(24), 13,249-13,257.

    Article  Google Scholar 

  • Institute of Earth Sciences, Academia Sinica, Taiwan. (1996). Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan: Other/Seismic Network. https://doi.org/10.7914/SN/TW.

  • Itaba, S. (2018). Rapid estimation of the moment magnitude of the 2011 Tohoku-Oki earthquake (\(M_w\) 9.0) from static strain changes. Earth, Planets and Space, 70, 124. https://doi.org/10.1186/s40623-018-0894-5.

    Article  Google Scholar 

  • Julian, B. R., Miller, A. D., & Foulger, G. R. (1998). Non-double-couple earthquakes 1. Theory. Reviews of Geophysics, 36(4), 525–549.

    Article  Google Scholar 

  • Kao, H., Chen, S. S. J., & Ma, K. F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. Journal of Geophysical Research, 103(B4), 7211–7229.

    Article  Google Scholar 

  • Kao, H., & Rau, R. J. (1999). Detailed structures of the subducted Philippine Sea plate beneath northeast Taiwan: A new type of double seismic zone. Journal of Geophysical Research, 104(B1), 1015–1033.

    Article  Google Scholar 

  • King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953.

    Google Scholar 

  • Langbein, J. (2015). Borehole strainmeter measurements spanning the 2014 \(M_w\) 6.0 South Napa earthquake, California: the effect from instrument calibration. Journal of Geophysical Research Solid Earth, 120(10), 7190–7202.

    Article  Google Scholar 

  • Lee, Y. H., Chen, G. T., Rau, R. J., & Ching, K. E. (2008). Coseismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan. Journal of Geophysical Research, 113, B04305. https://doi.org/10.1029/2004JB005180.

    Article  Google Scholar 

  • Lee, S. J. (2015). Numerical earthquake model of the 20 April 2015 southern Ryukyu subduction zone \(M\)6.4 event and its impact on seismic hazard assessment. Earth Planets Space, https://doi.org/10.1186/s40623-015-0337-5.

  • Lee, S. J., Lin, T. C., Liu, T. Y., & Wong, T. P. (2019). Fault-to-fault jumping rupture of the 2018 \(M_w\) 6.4 Hualien earthquake in Eastern Taiwan. Seismological Research Letters. https://doi.org/10.1785/0220180182.

  • Lee, S. J., Wong, T. P., Liu, T. Y., Lin, T. C., & Chen, C. T. (2020). Strong ground motion over a large area in northern Taiwan caused by the northward rupture directivity of the 2019 Hualien earthquake. Journal of Asian Earth Sciences, 192, 104095. https://doi.org/10.1016/j.jseaes.2019.104095.

    Article  Google Scholar 

  • Li, S., Wdowinski, S., Hsu, Y. J., & Shyu, J. B. H. (2020). Earthquake interactions in central Taiwan: probing Coulomb stress effects due to \(M_L\) \(\ge\) 5.5 earthquakes from 1900 to 2017. Journal of Geophysical Research Solid Earth, 125(8). https://doi.org/10.1029/2019JB019010.

  • Matsumoto, K., Takanezawa, T., & Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography, 56(5), 567–581.

    Article  Google Scholar 

  • Matsumoto, K., Sato, T., Takanezawa, T., & Ooe, M. (2001). GOTIC2: A program for computation of oceanic tidal loading effect. The Geodetic Society of Japan, 47, 243–248.

    Google Scholar 

  • Miller, S. A. (2020). Aftershocks are fluid-driven and decay rates controlled by permeability dynamics. Nature Communications, 11, 5787. https://doi.org/10.1038/s41467-020-19590-3.

    Article  Google Scholar 

  • Mouyen, M., Canitano, A., Chao, B. F., Hsu, Y. J., Steer, P., Longuevergne, L., & Boy, J. P. (2017). Typhoon-induced ground deformation. Geophysical Research Letters, 44(21), 11004–11011.

    Article  Google Scholar 

  • Neo, J. C., Huang, Y., Yao, D., & Wei, S. (2020). Is the aftershock zone area a good proxy for the mainshock rupture area? Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120190200.

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.

    Article  Google Scholar 

  • Perfettini, H., Stein, R. S., Simpson, R., & Cocco, M. (1999). Stress transfer by the 1988-1989 \(M\)=5.3 and 5.4 Lake Elsman foreshocks to the Loma Prieta fault: Unclamping at the site of peak mainshock slip. Journal of Geophysical Research, 104(B9), 20,169-20,182.

    Article  Google Scholar 

  • Perfettini, H., & Avouac, J. P. (2004). Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake. Taiwan. Journal of Geophysical Research, 109, B02304. https://doi.org/10.1029/2003JB002488.

    Article  Google Scholar 

  • Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., Lhomme, T., Walspersdorf, A., Cabral Cano, E., & Campillo, M. (2016). Triggering of the 2014 \(M_w\) 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience. https://doi.org/10.1038/NGEO2817.

  • Roeloffs, E. A., & Linde, A. T. (2007). Borehole observations and continuous strain and fluid pressure. In D. Dzurisin (Ed.), Volcano deformation geodetic measurements techniques (pp. 305–322). Berlin: Springer.

    Chapter  Google Scholar 

  • Sacks, S., Suyehiro, S., Evertson, D. W., & Yamagishi, Y. (1971). Sacks-Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps. Papers in Meteorology and Geophysics, 22, 195–208.

    Article  Google Scholar 

  • Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110, B08402. https://doi.org/10.1029/2004JB003251.

    Article  Google Scholar 

  • Shyu, J. B. H., Chen, C. F., & Wu, Y. M. (2016). Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture. Tectonophysics, 692, 295–308.

    Article  Google Scholar 

  • Stein, R. S. (1999). The role of stress transfer in earthquake occurrence. Nature, 402, 605–609.

    Article  Google Scholar 

  • Tamura, Y., & Agnew, D. C. (2008). Baytap08 user’s manual. SIO Technical Report, Scripps Institution of Oceanography. Available at http://repositories.cdlib.org/sio/techreport/82/.

  • Tang, C. H., Hsu, Y. J., Barbot, S., Moore, J. D. P., & Chang, W. L (2019). Lower-crustal rheology and thermal gradient in the Taiwan orogenic belt illuminated by the 1999 Chi–Chi earthquake. Science Advances, 5(2). https://doi.org/10.1126/sciadv.aav3287.

  • Theunissen, T., Font, Y., Lallemand, S., & Liang, W. T. (2010). The largest instrumentally recorded earthquake in Taiwan: Revised location and magnitude, and tectonic significance of the 1920 event. Geophysical Journal International, 183, 1119–1133.

    Article  Google Scholar 

  • Thomas, M. Y., Avouac, J. P., Champenois, J., Lee, J. C., & Kuo, L. C. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault. Taiwan. Journal of Geophysical Research, 119(6), 5114–5139.

    Google Scholar 

  • Toda, S., Stein, R. S., Richards-Dinger, K., & Bozkurt, S. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research, 110, B05S16. https://doi.org/10.1029/2004JB003415.

    Article  Google Scholar 

  • Utsu, T., Ogata, Y., & Matsu’ura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43, 1–33.

    Article  Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bulletin of the Seismological Society of America, 90(6), 1353–1368.

    Article  Google Scholar 

  • Wang, K., Dreger, D. S., Tinti, E., Bürgmann, R., & Taira, T. (2020). Rupture process of the 2019 Ridgecrest, California \(M_w\) 6.4 foreshock and \(M_w\) 7.1 earthquake constrained by seismic and geodetic data. Bulletin of the Seismological Society of America, 110(4), 1603–1626.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New, improved version of the Generic Mapping Tools released. Eos, Transactions of the American Geophysical Union, 79, 579. https://doi.org/10.1029/98EO00426.

    Article  Google Scholar 

  • Weston, J., Ferreira, A. M. G., & Funning, G. J. (2011). Global compilation of interferometric synthetic aperture radar earthquake source models: 1. Comparisons with seismic catalogs. Journal of Geophysical Research, 116, B08408. https://doi.org/10.1029/2010JB008131.

    Article  Google Scholar 

  • Weston, J., Ferreira, A. M. G., & Funning, G. J. (2012). Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics, 532–535, 61–81.

    Article  Google Scholar 

  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382.

    Article  Google Scholar 

  • Wu, F. T., Liang, W. T., Lee, J. C., Benz, H., & Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research, 114, B07404. https://doi.org/10.1029/2008JB005950.

    Article  Google Scholar 

  • Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41–59.

    Article  Google Scholar 

  • Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199–217.

    Article  Google Scholar 

  • Zheng, T. Y., Yao, Z. X., & Liu, P. C. (1995). The 14 November 1986 Taiwan earthquake - an event with isotropic component. Physics of the Earth and Planetary Interiors, 91, 285–298.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Editor-in-Chief Carla F. Braitenberg and an anonymous reviewer for their constructive suggestions and comments allowing to improve the manuscript. We are grateful to Alan Linde, Selwyn Sacks and the support staff of the Carnegie Institution of Washington for the construction, installation, and maintenance of the dilatometers and to Hsin-Ming Lee who has collected the strainmeter data. The authors acknowledge Yi-Chuen Tsai and Mei-Jun Yu for processing the GPS data and Ya-Ju Hsu, Hsin-Hua Huang and Jian-Cheng Lee for useful discussions. We are grateful to Marion Thomas for providing the LVF fault model. Some figures were drawn using the Generic Mapping Tools (Wessel and Smith, 1998). This is the contribution of the Institute of Earth Sciences, Academia Sinica, IESAS2396.

Funding

This research is supported by the Ministry of Science and Technology grant MOST 108-2116-M-001-027-MY2.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, conceptualization, data processing, and analysis were performed by HFL, YFH and AC. The first draft of the manuscript was written by AC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexandre Canitano.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5084 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HF., Hsu, YF. & Canitano, A. Source Modeling of the 2009 Fengpin–Hualien Earthquake Sequence, Taiwan, Inferred From Static Strain Measurements. Pure Appl. Geophys. 180, 715–733 (2023). https://doi.org/10.1007/s00024-022-03068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03068-y

Keywords

Navigation