Skip to main content
Log in

Analysis of iGrav Superconducting Gravity Measurements in Kunming, China, with Emphasis on Calibration, Tides, and Hydrology

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The superconducting gravimeter (SG) can provide excellent data to infer Earth’s surface time-varying gravity signals. In this study, we analyze the measurements and experiments of the newly established iGrav-007 SG during 2013–2019. The SG calibration factors with relative precisions of 0.0923% and 0.0782% are determined from two parallel registrations with FG5 absolute gravimeters, and the SG sensitivity calibration to the 0.1 μGal level is presented from a moving external-mass experiment. The local synthesized tides are then calculated with ET34-ANA-V73 software, and nine different ocean tide models for the eight diurnal/semi-diurnal constituents are tested for corrections of the ocean tide gravity effects. After preprocessing the raw SG data, we compare the gravity residuals with colocated precipitation, groundwater level, and GPS height observations from June 2017 to December 2018. Meanwhile, the local precipitation gravity effects are modeled by considering the recharge and discharge time, and the groundwater variation influences are described using a regression model with an admittance coefficient of 0.65 μGal/m. We are able to show good correlations between the gravity residuals and height changes as well as the estimated local and global water storage loading effects in the annual and seasonal (about 140 days) terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgements

We acknowledge M.S. Bos and H.-G. Scherneck for making the possible access to the free Ocean Tide Loading Provider (http://holt.oso.chalmers.se/loading/index.html). The atmospheric, non-tidal oceanic, and hydrological loading models are provided by the ESMGFZ product reposity (http://rz-vm115.gfz-potsdam.de:8080/repository). We thank the reviewers (D. Crossley and an anonymous reviewer) and the associate editor U. Riccardi for their very valuable comments and suggestions, all of which greatly improved the manuscript.

Funding

This study is supported by the National Natural Science Foundation of China (Grant Nos. 41874032, 42030105, 41631072, 41721003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Shen.

Ethics declarations

Conflict of Interest

The authors declare that they do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Adjusted tidal parameters for Kumming (iGrav-007 sensor), from June 2017 to September 2019.

fmin (cpd)

fmax (cpd)

Wave

Ath (nm/s2)

δ

δ error

κ (°)

κ error (°)

0.580000

0.791600

SGM2Q1

0.29210

1.12911

0.59462

35.669

30.149

0.791601

0.810000

2SGM1

0.18122

0.53153

0.98048

81.597

105.630

0.810001

0.821300

3Q1

0.68057

1.31718

0.27191

− 4.546

11.834

0.821301

0.842147

SGMQ1

1.76311

1.17703

0.10148

− 3.665

4.940

0.842148

0.860500

2Q1

6.05140

1.14530

0.03055

2.438

1.529

0.860501

0.878675

SGM1

7.29747

1.18998

0.02507

− 1.113

1.208

0.878676

0.896800

Q1

45.72919

1.16396

0.00808

− 0.452

0.398

0.896801

0.915000

RO1

8.67999

1.18510

0.02065

− 1.940

0.998

0.915001

0.933200

O1

238.83795

1.15839

0.00185

− 0.639

0.091

0.933201

0.947991

TAU1

3.11325

1.23643

0.04684

3.307

2.171

0.947992

0.964460

NTAU1

1.76125

1.30543

0.10628

3.494

4.665

0.964461

0.966853

NO1

18.77436

1.12208

0.01045

0.085

0.534

0.966854

0.971667

CHI1

3.59250

1.18039

0.05047

0.306

2.449

0.971668

0.996933

PI1

6.49225

1.14241

0.02586

3.732

1.297

0.996934

0.998631

P1

111.11307

1.15033

0.00151

− 0.361

0.075

0.998632

1.002333

S1

2.62542

2.39401

0.08979

− 42.777

2.150

1.002334

1.004200

K1

335.76870

1.12729

0.00088

− 0.728

0.045

1.004201

1.006845

PSI1

2.62664

1.13146

0.06429

− 6.466

3.256

1.006846

1.023622

PHI1

4.78026

1.18537

0.03502

− 2.703

1.693

1.023623

1.035379

TET1

3.59147

1.22358

0.05020

0.808

2.351

1.035380

1.055000

J1

18.78093

1.15292

0.00963

− 0.669

0.478

1.055001

1.075633

SO1

3.11470

1.13650

0.05640

− 0.610

2.844

1.075634

1.086000

OO1

10.27093

1.14758

0.02336

− 0.051

1.166

1.086001

1.112600

NU1

1.96688

1.00750

0.11462

0.351

6.518

1.112601

1.470243

2(KM)P

0.31408

1.13603

0.55572

3.169

28.041

1.470244

1.808000

2EPS2

0.75169

1.25113

0.07930

− 8.952

3.632

1.808001

1.824458

3N2

1.75415

1.13590

0.04078

− 0.567

2.058

1.824459

1.845944

EPS2

4.54675

1.15721

0.01649

0.649

0.816

1.845945

1.863026

2N2

15.59133

1.16725

0.00479

− 0.854

0.235

1.863027

1.880264

MUE2

18.81743

1.16862

0.00423

− 0.293

0.207

1.880265

1.899500

N2

117.82104

1.16217

0.00155

− 0.315

0.076

1.899501

1.915114

NUE2

22.38086

1.16709

0.00360

− 0.073

0.177

1.915115

1.928402

GAM2

1.84740

1.16129

0.04058

0.599

2.002

1.928403

1.930667

ALF2

2.11363

1.20579

0.03723

− 1.964

1.769

1.930668

1.933790

M2

615.36173

1.16063

0.00020

− 0.323

0.010

1.933791

1.936152

BET2

1.86198

1.24436

0.04382

− 3.485

2.018

1.936153

1.950419

DEL2

0.72135

1.30616

0.08591

− 1.024

3.770

1.950420

1.964767

LAM2

4.53766

1.13366

0.01773

0.152

0.896

1.964768

1.984282

L2

17.39501

1.16273

0.00547

− 1.012

0.269

1.984283

1.995500

2T2

0.67854

0.81121

0.12176

− 5.557

8.603

1.995501

1.998996

T2

16.72639

1.14759

0.00497

0.685

0.248

1.998997

2.001678

S2

286.27319

1.15911

0.00029

− 0.117

0.014

2.001679

2.004380

R2

2.38853

1.21276

0.02802

− 5.506

1.324

2.004381

2.010635

K2

77.77178

1.15542

0.00124

− 0.316

0.062

2.010636

2.022488

KPHI2

0.52974

0.83991

0.15448

− 1.263

10.538

2.022489

2.038400

ZETA2

0.83174

1.39470

0.13359

− 0.479

5.489

2.038401

2.056000

ETA2

4.35033

1.19596

0.02123

0.403

1.017

2.056001

2.075800

2S2

0.72150

1.19121

0.14445

− 7.991

6.949

2.075801

2.092667

2K2

1.13800

1.28363

0.12152

6.197

5.426

2.092668

2.396000

2KN2

0.21796

0.77336

0.48262

− 21.652

35.768

2.580000

2.826600

M2N3

0.51990

1.15411

0.11447

− 7.906

5.684

2.826601

2.850000

MMUE3

0.52263

1.16052

0.12748

5.295

6.294

2.850001

2.864300

MN3

2.99898

1.04050

0.02177

− 1.314

1.198

2.864301

2.880000

MNUE3

0.56142

1.01662

0.11942

4.036

6.729

2.880001

2.915496

M3

10.94282

1.05897

0.00617

− 0.375

0.334

2.915497

2.953157

ML3

0.61974

1.11906

0.10535

2.054

5.393

2.953158

3.340000

MK3

1.42524

1.13764

0.05860

5.933

2.951

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, W., Shen, W. & Jia, J. Analysis of iGrav Superconducting Gravity Measurements in Kunming, China, with Emphasis on Calibration, Tides, and Hydrology. Pure Appl. Geophys. 180, 643–660 (2023). https://doi.org/10.1007/s00024-022-03036-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03036-6

Keywords

Navigation