Skip to main content
Log in

Attenuation of Seismic Coda-Waves in Algeria: Algiers Vicinity and Mitidja Basin

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A single backscattering method is used to estimate coda quality factor functions (Qc) from coda-wave attenuation for the Algiers vicinity and eastern part of the Mitidja Basin. The frequency-dependent Qc relation is determined using a high-quality data set with good signal-to-noise ratios (SNR > 5) of 228 accelerogram waveforms of local earthquakes in the magnitude range 2.3–5.3, with focal depth varying from 1.3 to 31 km and epicentral distances less than 65 km. We studied the frequency and lapse time dependence of coda-wave attenuation through the variation of coda window length of 20, 30 and 35 s for seven frequency bands in the range of 1.5–24 Hz. The obtained average Qc increases with increasing coda window length, implying an increase in sampled depth. The Qc of horizontal components (N and E) are slightly lower than the Qc of the vertical component (Z). The obtained low values of Qc and high values of frequency-dependent parameter n indicate that the penetration depth that consists of the crust and part of the upper mantle beneath the Algiers region is seismically active with a high level of heterogeneity. The average frequency-dependent Qc values in the three directions are QcZ = (69.76 ± 2.98)f(0.82 ± 0.01), QcN = (60.2 ± 4.86)f(0.88 ± 0.03) and QcE = (59.63 ± 5.07)f(0.88 ± 0.03) with a coda window length of 20 s in which the penetration depth is 56.2 km and the covered area is 8141 km2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data used in this study are from the Centre National de Recherche Appliquée en Génie Parasismique, Algiers, Algeria (CGS), and are available from the first author.

Code Availability

Calculations have been made with custom codes.

References

  • Aït Hamou, F. (1987). Etude pétrologique et géochimique du volcanisme d'âge Miocène de la région de Hadjout (Ouest Algérois). Thèse de Magister en Géologie, spécialité Pétrologie-structurologie. USTHB, IST, Alger, Algérie.

  • Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 74(2), 615–631.

    Article  Google Scholar 

  • Aki, K., & Chouet, B. (1975). Origin of the coda waves: Source attenuation and scattering effects. Journal of Geophysical Research, 80, 3322–3342.

    Article  Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantitative seismology—Theory and methods. Freeman.

    Google Scholar 

  • Akyol, N. (2015). Lapse time dependence of coda wave attenuation in Central West Turkey. Tectonophysics, 659, 53–62.

    Article  Google Scholar 

  • Anderson, D. L., Ben-Menahem, A., & Archambeau, C. B. (1965). Attenuation of seismic energy in upper mantle. Journal of Geophysical Research, 70, 1441–1448.

    Article  Google Scholar 

  • Arab, O., Azguet, R., Ouchen, I., El Fellah, Y., Harnafi, M., Sebbani, J., & Villaseñor, A. (2020). Attenuation of seismic coda waves in the Rif area northern Morocco. Journal of African Earth Sciences, 165, 103815.

    Article  Google Scholar 

  • Atkinson, G. M. (2004). Empirical attenuation of ground motion spectral amplitudes in southeastern Canada and the northeastern United States. Bulletin of the Seismological Society of America, 94, 1079–1095.

    Article  Google Scholar 

  • Atkinson, G. M., & Mereu, R. (1992). The shape of ground motion attenuation curves in southeastern Canada. Bulletin of the Seismological Society of America, 82, 2014–2031.

    Article  Google Scholar 

  • Ayadi, A., Dorbath, C., Ousadou, F., Maouche, S., Chikh, M., Bounif, M. A., & Meghraoui, M. (2008). Zemmouri earthquake rupture zone (Mw 6.8, Algeria): aftershocks sequence relocation and 3D velocity model. Journal of Geophysical Research Solid Earth, 113(B9), B09301.

    Google Scholar 

  • Aydın, U. (2015). Estimation of seismodynamics differences and lateral variations of coda Q in Eastern Anatolia. Arabian Journal of Geosciences, 88, 6363–6370.

    Article  Google Scholar 

  • Aymé, A. (1955). Contribution à l’étude de la plaine de la Mitidja occidentale et de sa bordure atlasique. Bull. Serv. Carte d’Algérie n°8, 1955.

  • Azguet, R., Bouskri, G., Timoulali, Y., Harnafi, M., & Fellah, Y. E. (2019). Attenuation of coda waves in the SW of High-Atlas area, Morocco. Geodesy and Geodynamics, 10(4), 297–306.

    Article  Google Scholar 

  • Badawy, A., & Morsy, M. A. (2012). Seismic wave attenuation in the greater Cairo region, Egypt. Pure and Applied Geophysics, 1699, 1589–1600.

    Article  Google Scholar 

  • Belabbès, S., Wicks, C., Çakir, Z., & Meghraoui, M. (2009). Rupture parameters of the 2003 Zemmouri (Mw 6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS. Journal of Geophysics Research, 114, 03406. https://doi.org/10.1029/2008jb005912

    Article  Google Scholar 

  • Bellon, H., Brouse, R., & Gillot, P.Y. (1975). Recognition of Moi-Pliocene distensional phases in the North Mediterranean region by analysis of Cantalian volcanism, France. In Ist Meeting of European geological Societies. Oxford, September.

  • Bianco, F., Pezzo, D. E., Castellano, M., Ibanez, J., & Luccio, F. D. (2002). Separation of intrinsic and scattering seismic attenuation in the Southern Apennine Zone, Italy. Geophysics Journal International, 150, 10–22.

    Article  Google Scholar 

  • Bonneton, J. R. (1977). Géologie de la zone de contact entre Mitidja et Atlas de Blida au sud d’Alger. Thèse de doctorat de 3ème cycle. Université Pierre et Marie Curie, Paris.

  • Bonneton, J. R., & Truillet, R. (1979). Mise en évidence dans la plaine de la Mitidja, d’accidents profonds. Conséquences hydrologiques et pédologiques (Algérie septentrionale). C r Somm Geol Fr Fasc, 1, 23–25.

    Google Scholar 

  • Boudiaf, A. (1996). Etude sismotectonique de la région d’Alger et de la Kabylie: Utilisation des modèles numériques de terrain (MNT) et de la télédétection pour la reconnaissance des structures tectoniques actives. Thèse de doctorat Univ. Montpellier II, France, p. 274.

  • Boulanouar, A., El Moudnib, L., Padhy, S., Harnafi, M., Villaseñor, A., Gallart, J., Sebbani, J., et al. (2017). Estimation of coda wave attenuation in Northern Morocco. Pure and Applied Geophysics, 1753, 883–897.

    Google Scholar 

  • Brahma, J. (2012). Estimation of coda wave attenuation quality factor from digital seismogram using statistical approach. Science and Technology, 21, 1–7.

    Article  Google Scholar 

  • Das, R., Mukhopadhyay, S., Singh, R. K., & Baidya, P. R. (2018). Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions. Tectonophysics, 738, 51–63.

    Article  Google Scholar 

  • Dasović, I., Herak, M., & Herak, D. (2012). Attenuation of coda waves in the contact zone between the Dinarides and the Adriatic Microplate. Studia Geophysica Et Geodaetica, 561, 231–247.

    Article  Google Scholar 

  • Del Pezzo, E., Bianco, F., Marzorati, S., Augliera, P., D’Alema, E., & Massa, M. (2011). Depth-dependent intrinsic and scattering seismic attenuation in north central Italy. Geophysical Journal International, 186(1), 373–381.

    Article  Google Scholar 

  • Del Pezzo, E., & Patanè, D. (1992). Coda Q dependence on time. Frequency and coda duration interval at Mt. Etna. Sicily (pp. 109–119).

  • Dobrynina, A. A., Sankov, V. A., Chechelnitsky, V. V., & Déverchère, J. (2016). Spatial changes of seismic attenuation and multiscale geological heterogeneity in the Baikal Rift and surroundings from analysis of coda waves. Tectonophysics, 675, 50–68.

    Article  Google Scholar 

  • El-Hadidy, S., Mohamed Adel, M. E., Deif, A., Abu El-Ata, S. A., & Moustafa Sayed, S. R. (2006). Estimation of frequency-dependent coda wave attenuation structure at the vicinity of Cairo Metropolitan area. Acta Geodaetica Et Geophysica Hungarica, 412, 227–235.

    Article  Google Scholar 

  • Erickson, D., McNamara, D. E., & Benz, H. M. (2004). Frequency-dependent Lg Q within the continental United States. Bulletin of the Seismological Society of America, 94(5), 1630–1643.

    Article  Google Scholar 

  • Farrokhi, M., Hamzehloo, H., Rahimi, H., & Allamehzadeh, M. (2015). Estimation of coda wave attenuation in the central and eastern Alborz, Iran. Bulletin of the Seismological Society of America, 1053, 1756–1767.

    Article  Google Scholar 

  • Fehler, M., Hoshiba, M., Sato, H., & Obara, K. (1992). Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy vs. hypocentral distance. Geophysical Journal International, 108, 787–800.

    Article  Google Scholar 

  • Frankel, A. (1991). Review for “Observational and physical basis for coda precursor Jin. A. and K. Aki”. In M. Wyss (Eds.) Evaluation of Proposed Earthquake Precursors (AGU. Washington. D. C. pp, 51–53).

  • Frankel, A., & Wennerberg, L. (1987). Energy-flux model of the seismic coda: Separation of scattering and intrinsic attenuation. Bulletin Seismology Society of America, 77, 1223–1251.

    Article  Google Scholar 

  • Gholamzadeh, A. (2021). Spatial variations of coda-wave attenuation in the Khurgu region. South-east of the Zagros from analysis of local earthquakes. Physics and Chemistry of the Earth, Parts A/B/C. 103004.

  • Giampiccolo, E., & Tuvè, T. (2018). Regionalization and dependence of coda Q on frequency and lapse time in the seismically active Peloritani region northeastern Sicily, Italy. Journal of Seismology, 224, 1059–1074.

    Article  Google Scholar 

  • Giampiccolo, E., Tusa, G., Langer, H., & Gresta, S. (2002). Attenuation in Southeastern Sicily Italy by applying different coda methods. Journal of Seismology, 6, 487–501.

    Article  Google Scholar 

  • Giampiccolo, E., Gresta, S., & Rasconà, F. (2004). Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily Italy. Physics Earth Planet in, 145, 55–66.

    Article  Google Scholar 

  • Glangeaud, L. (1932). Etude géologique de la région littorale de la province d’Alger. Bull. Serv, Carte géol. Algérie, 2 ème série. N°8.

  • Glangeaud, L., Aymé, A., Mattauer, M., & Muraour, P. (1952). Histoire géologique de la province d'Alger. In XIX Congrès Géologique International, Monographies régionales, 1ère série, Algérie, N°25.

  • Guemache, M. (2010). Evolution géodynamique des bassins sismogènes de l’Algérois (Algérie) : Approche pluridisciplinaires (méthodes géologiques et géophysiques). Thèse de Doctorat, FSTGAT/USTHB, p. 267.

  • Gupta, S. C., Teotia, S. S., Rai, S. S., & Gautam, N. (1998). Coda Q estimates in the Koyna region, India. Q of the Earth: Global regional and laboratory studies (pp. 713–731). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Harbi, A., Maouche, S., Ayadi, A., Benouar, D., Panza, G. F., & Benhallou, H. (2004). Seismicity and tectonic structures in the site of Algiers and its surroundings: A step towards microzonation. PAGEOPH, 161, 949–967.

    Article  Google Scholar 

  • Harbi, A., Maouche, S., Vaccari, F., Aoudia, A., Oussadou, F., Panza, G. F., & Benouar, D. (2007). Seismicity, seismic input and site effects in the Sahel-Algiers Region (North Algeria). Soil Dynamics and Earthquake Engineering, 27(5), 427–447.

    Article  Google Scholar 

  • Harbi, A., Sebaï, A., Benmedjber, M., Ousadou, F., Rouchiche, Y., Grigahcene, A., Aïni, D., Bourouis, S., Maouche, S., & Ayadi, A. (2015). The Algerian homogenized macroseismic database (267–1989): A deeper insight into the Algerian historical seismicity. Seismological Research Letters, 86(6), 1705–1716.

    Article  Google Scholar 

  • Harbi, A., Sebai, A., Rouchiche, Y., Maouche, S., Ousadou, F., Abbes, K., Ait Benamar, D., & Benmedjber, A. (2017). Reappraisal of the seismicity of the southern edge of the Mitidja bassin (Blida region, north central Algeria). Seismology Research Letters, 88, 4. https://doi.org/10.1785/0220160217

    Article  Google Scholar 

  • Havskov, J., Malone, S., McClurg, D., & Crosson, R. (1989). Coda Q for the state of Washington. Bulletin of the Seismological Society of America, 79(4), 1024–1038.

    Google Scholar 

  • Hoshiba, M. (1997). Seismic coda wave envelope in depth dependent S wave velocity structure. Physics of the Earth and Planetary Interiors, 104, 15–22.

    Article  Google Scholar 

  • Kandel, T. P., Yamada, M., & Pokhrel, P. (2020). Determination of high-frequency attenuation characteristic of coda waves in the central region of Nepal Himalaya. Journal of Nepal Geological Society, 60, 75–86.

    Article  Google Scholar 

  • Klein, F. W. (1978), Hypocenter location program Hypoinverse, Open File Rep. 78-694, U.S. Geol. Surv., Reston, Va.

  • Kumar, N., Parvez, I. A., & Virk, H. S. (2005). Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Physics of the Earth and Planetary Interiors, 151, 243–258.

    Article  Google Scholar 

  • Kumar, C. P., Sarma, C. S. P., Shekar, M., & Chadha, R. K. (2007). Attenuation studies based on local earthquake coda waves in the southern Indian peninsular shield. Natural Hazards, 40(3), 527–536.

    Article  Google Scholar 

  • Kumar, S., Singh, P., Singh, P., Biswal, S., & Parija, M. P. (2016). Frequency dependent attenuation characteristics of coda waves in the Northwestern Himalayan India region. Journal of Asian Earth Sciences, 117, 337–345.

    Article  Google Scholar 

  • Lepvrier, C. (1981). Carte géologique au 1/50 000 de Cherchell. Nouvelle édition.

  • Lepvrier, C., & Magne, J. (1975). Le Néogène “post-nappes” du Tell septentrional à l’Ouest d’Alger (Algérie). Bulletin Society Géology De France, (7) XVII, No, 4, 612–619.

    Article  Google Scholar 

  • Ma’hood, M. (2014). Attenuation of high-frequency seismic waves in eastern Iran. Pure and Applied Geophysics, 171, 2225–2240.

    Article  Google Scholar 

  • Ma’hoodHamzehloo, M. H. (2009). Estimation of coda wave attenuation in East Central Iran. Journal of Seismology, 131, 125–139.

    Google Scholar 

  • Maouche, S., & Harbi, A. (2018). The active faults of the Mitidja basin (North Central Algeria): What does the seismic history of the region tell us? A review. Euro-Mediterrean Journal of Environmental Integration, 3, 21. https://doi.org/10.1007/s41207-018-0061-1

    Article  Google Scholar 

  • Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadadd, Y., & Haddoume, H. (2011). Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics, 509(1–2), 69–80. https://doi.org/10.1016/jtecto.2011.06003

    Article  Google Scholar 

  • Margerin, L., Campillo, M., & Van Tiggelen, B. (1998). Radiative transfer and diffusion of waves in a layered medium: New insight into coda Q. Geophysical Journal International, 134, 247–258.

    Article  Google Scholar 

  • Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K., & Zeng, Y. (1992). A comparative study of scattering, intrinsic, and coda Q—1 for Hawaii, Long Valley, and central California between 1.5 and 15.0 Hz. Journal of Geophysical Research: Solid Earth, 97B5, 6643–6659.

    Article  Google Scholar 

  • Meghraoui, M. (1988). Géologie des zones sismiques du nord de l’Algérie (Paléosismologie, Tectonique active et synthèse sismotectonique). Thèse de doctorat d’Etat, Université de Paris-Sud, Centre d’Orsay, France, p. 356.

  • Meghraoui, M. (1991). Blind reverse faulting system associated with the Mont Chenoua Tipaza earthquake of October 29, 1988 (north central Algeria). Terra Nova, 3, 84–93.

    Article  Google Scholar 

  • Meghraoui, M., & Doumaz, F. (1996). Earthquake-induced flooding and paleoseismicity of the El Asnam (Algeria) fault-related fold. Journal of Geophysics Research, 101, 17617–17644.

    Article  Google Scholar 

  • Meghraoui, M., Maouche, S., Chemaa, B., Cakir, Z., Aoudia, A., Harbi, A., Alasset, P. J., Ayadi, A., Bouhadad, Y., & Benhamouda, F. (2004). Coastal uplift and thrust faulting associated with the Mw = 6.8 Zemmouri (Algeria) earthquake of 21 May, 2003. Geophysics Research Letters, 31, 19605. https://doi.org/10.1029/2004gl020466

    Article  Google Scholar 

  • Mitchell, B. J. (1975). Regional Rayleigh wave attenuation in North America. Journal of Geophysical Research, 80, 4904–4916.

    Article  Google Scholar 

  • Mohanty, W. K., Prakash, R., Suresh, G., Shukla, A. K., Walling, M. Y., & Srivastava, J. P. (2009). Estimation of coda wave attenuation for the national capital region. Delhi. India using local earthquakes. Pure and Applied Geophysics, 1663, 429–449.

    Article  Google Scholar 

  • Morsy, M. A., & Abed, A. M. (2013). Attenuation of seismic waves in Central Egypt. NRIAG Journal of Astronomy and Geophysics, 21, 8–17.

    Article  Google Scholar 

  • Padhy, S., & Subhadra, N. (2010). Attenuation of high-frequency seismic waves in northeast India. Geophysical Journal International, 1811, 453–467. https://doi.org/10.1111/j.1365-246X.2010.04502.x

    Article  Google Scholar 

  • Padhy, S., Subhadra, N., & Kayal, J. R. (2011). Frequency-dependent attenuation of body and coda waves in the Andaman Sea basin. Bulletin of the Seismological Society of America, 101, 109–125.

    Article  Google Scholar 

  • Phillips, W. S., & Aki, K. (1986). Site amplification of coda waves from local earthquakes in central California. Bulletin of the Seismological Society of America, 76(3), 627–648.

    Article  Google Scholar 

  • Pujades, L. G., Canas, J. A., Egozcue, J. J., Puigvi, M. A., Gallart, J., Lana, X., et al. (1990). Coda-Q distribution in the Iberian Peninsula. Geophysical Journal International, 100(2), 285–301.

    Article  Google Scholar 

  • Pulli, J. J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America, 74, 1149–1166.

    Google Scholar 

  • Rahimi, H., & Hamzehloo, H. (2008). Lapse time and frequency-dependent attenuation of coda waves in the Zagros continental collision zone in Southwestern Iran. Journal of Geophysics and Engineering, 5(2), 173–185.

    Article  Google Scholar 

  • Rajabi baniani, S., & Yokoi, T. (2014). Site effect and q-factor estimation of Arasbaran Ahar- Arzaghan earthquake.Iran by spectral inversion method. Bulletin of the International Institute of Seismology and Earthquake Engineering, 48, 25–30.

    Google Scholar 

  • Rautian, T. G., & Khalturin, V. I. (1978). The use of the coda for determination of the earthquake source spectrum. Bulletin of the Seismological Society of America, 68(4), 923–948.

    Article  Google Scholar 

  • Roecker, S. W., Tucker, B., King, J., & Hatzfeld, D. (1982). Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bulletin of the Seismological Society of America, 72(1), 129–149.

    Article  Google Scholar 

  • Sangwan, P., & Kumar, D. (2020). Estimation of Coda Q for northeast India using nonlinear regression. Journal of Earth System Science, 1291(1), 1–15.

    Google Scholar 

  • Saoudi, N. (1989). Pliocène et Pléistocène inférieur et moyen du Sahel occidental d'Alger. Entreprise National du Livre, Alger.

  • Sato, H. (1977). Energy propagation including scattering effects. Single isotropic approximation. Journal of Physics Earth, 25, 27–41.

    Article  Google Scholar 

  • Sato, H., & Fehler, M. C. (2008). Earth heterogeneity and scattering effects on seismic waves. Advances in Geophysics, 50.

  • Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth (2nd ed., pp. 1–496). New York: Springer.

    Google Scholar 

  • Sedaghati, F., & Pezeshk, S. (2016). Estimation of the coda-wave attenuation and geometrical spreading in the New Madrid seismic zone. Bulletin of the Seismological Society of America, 1064, 1482–1498.

    Article  Google Scholar 

  • Sertçelik, F. (2012). Estimation of coda wave attenuation in the east Anatolia fault zone, Turkey. Pure Applied Geophysics, 169, 1189–1204.

    Article  Google Scholar 

  • Sertçelik, F., & Guleroglu, M. (2017). Coda wave attenuation characteristics for North Anatolian Fault Zone, Turkey. Open Geosciences, 91, 480–490.

    Google Scholar 

  • Singh, S. K., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research, 88, 527–538.

    Article  Google Scholar 

  • Singh, S., Singh, C., Biswas, R., & Singh, A. (2017). Frequency and lapse time dependent seismic attenuation in eastern Himalaya and southern Tibet. Natural Hazards, 853, 1709–1722.

    Article  Google Scholar 

  • Stein, S., & Wysession, M. (2003). An introduction to seismology. Earthquakes, and Earth, 7(9), 10.

    Google Scholar 

  • Strzerzynski, P., Déverchère, J., Cattaneo, A., Domzig, A., Yelles, K., Mercier de Lépinay, B., Babonneau, N., & Boudiaf, A. (2010). Tectonic inheritance and Pliocene-Pleistocene inversion of the Algerian margin around Algiers: Insights from multibeam and seismic reflection data. Tectonics, 29(2).

  • Tripathi, J. N., & Ugalde, A. (2004). Regional estimation of Q from seismic coda observation by the Gauribidanur seismic array southern India. Physics Earth Planet in, 145, 115–126.

    Article  Google Scholar 

  • Tselentis, G. (1998). Intrinsic and scattering seismic attenuation W. Greece. Pure Applied Geophysics, 153, 703–712.

    Article  Google Scholar 

  • Ugalde, A., Vargas, C. A., Pujades, L. G., & Canas, J. A. (2002). Seismic coda attenuation alter the Mw= 6.2 Armenia Colombia earthquake of 25 January. 1999. Journal of Geophysics Research, 107, 1–12.

    Article  Google Scholar 

  • Van Der Meijde, M., Van Der Lee, S., & Giardini, D. (2003). Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophysical Journal International, 1523, 729–739.

    Article  Google Scholar 

  • Woodgold, C. R. D. (1994). Coda Q in the Charlevoix Quebec region: Lapse-time dependence and spatial and temporal comparisons. Bulletin of the Seismological Society of America, 84, 1123–1131.

    Google Scholar 

  • Xia, J., Miller, R. D., Park, C. B., & Tian, G. (2002). Determining Q of near-surface materials from Rayleigh waves. Journal of Applied Geophysics, 51(2–4), 121–129.

    Article  Google Scholar 

  • Yoshimoto, K., Sato, H., & Ohtake, M. (1993). Frequency dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda normalization method. Geophysical Journal International, 114, 165–174.

    Article  Google Scholar 

  • Yun, S., Lee, W. S., Lee, K., & Noh, M. H. (2007). Spatial distribution of coda Q in South Korea. Bulletin of the Seismological Society of America, 973, 1012–1018.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the colleagues from CGS working in the permanent accelerograph network. The authors would also like to thank anonymous reviewers for their thoughtful comments and constructive suggestions that significantly improved this article.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassima Benkaci.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkaci, N., Airouche, A., Abbes, K. et al. Attenuation of Seismic Coda-Waves in Algeria: Algiers Vicinity and Mitidja Basin. Pure Appl. Geophys. 179, 1011–1035 (2022). https://doi.org/10.1007/s00024-022-02974-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02974-5

Keywords

Navigation