Skip to main content
Log in

Pleistocene-Holocene Monogenetic Volcanism at the Malko-Petropavlovsk Zone of Transverse Dislocations on Kamchatka: Geochemical Features and Genesis

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Malko-Petropavlovsk zone of transverse dislocations (MPZ) was formed on the extension of the deep Avachinsky transform fault in perpendicular relation to the subduction trench. It is a natural boundary between variously aged slabs in Kamchatka (103–105 Ma under Southern Kamchatka and 87–92 Ma under the Eastern volcanic belt). Monogenetic cinder cones in the MPZ are randomly distributed along these long-lived rupture zones. Here we present new geochemical and isotopic results of monogenetic volcanism in the MPZ. Based on whole rock and trace element geochemistry, Pb-Sr-Nd isotopic ratios of monogenetic cinder cone magmas were shown to tap the enriched mantle source (low 143Nd/144Nd isotopic ratios (0.512959–0.512999), and changed  as 87Sr/86Sr (0.703356–0.703451) and 206Pb/204Pb (18.30–18.45), 208Pb/207Pb (38.00–38.12) isotopic ratios). High Nb/Yb and La/Yb ratios, without significant inputs of the slab’s components (the lowest Ba, Th content), indicate decompression melting predominately. Calculations of the pressure (9–11 kbar) and temperature (1160–1240 °C) conditions using a glass thermobarometer suggest that magma of monogenetic cinder cones resided near the Moho boundary prior to eruption. This correlates with the crustal discontinuity under the MPZ according to geophysical observations (converted-wave seismic exploration and magnetotelluric sounding). The majority of well-preserved monogenetic cinder cones were formed in Holocene, after the last glaciation, but eruptions were not observed historically. This, however, suggests that similar eruptions in the MPZ may occur in the future. Given that the MPZ hosts major population centres of Kamchatka (Petropavlovsk, Elizovo, Vilyuchinks, and Paratunka: ~ 250,000 people or ~ 80% of the whole Kamchatkan population live in the major cities on the coastline of the MPZ), we highlight the urgent need to install a continuous monitoring system around the MPZ cones, geophysical investigation, and more serious attention from the local government and scientists. In particular, a detailed study of the MPZ regarding age, volume, and volcanic hazard assessment (pyroclastic vs extrusive) will help reduce potential risks of eruptions from monogenetic volcanoes for humans and infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

The list of monogenic cinder cones (Supplementary file 1), their geochemical and isotopic measurements (Supplementary 2), and demonstration of the genesis of the long-lived transform fault under the MPZ (Supplementary 3) are available in Bergal-Kuvikas et al. (2021), “Monogenetic volcanism at Malko-Petropavlovsk zone of the transverse dislocation (Kamchatka)”, Mendeley Data, V1, https://doi.org/10.17632/8d69jr8yjv.1https://data.mendeley.com/datasets/8d69jr8yjv/draft?a=33739679-5dee-4b10-9d3f-ded4d55e79b8

Code availability

Not applicable.

References

  • Alaniz-Alvarez, S. A., Nieto-Samaniego, Á. F., & Ferrari, L. (1998). Effect of strain rate in the distribution of monogenetic and polygenetic volcanism in the Transmexican volcanic belt. Geology, 26(7), 591–594. https://doi.org/10.1130/0091-7613(1998)026%3c0591:EOSRIT%3e2.3.CO;2

    Article  Google Scholar 

  • Albert, H., Costa, F., & Martí, J. (2016). Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruptions. Geology, 44(3), 211–214. https://doi.org/10.1130/G37239.1

    Article  Google Scholar 

  • Andreev, A. A. (1993). Transform faults of the Earth`s crust Northwestern Pacific. Pacific Geology, 3, 11–20. in Russian.

    Google Scholar 

  • Aprelkov, S. E., & Borzova, G. P. (1963). Young volcanic structures around Avacha bay. Questions of Geography of Kamchatka, 1, 34–40. in Russian.

    Google Scholar 

  • Aprelkov, S. E., Ivanov, B. V., & Popruzhenko, S. V. (1999). Tectonics and Geodynamic Evolution of Southeastern Kamchatka (Petropavlovsk Geodynamic Ground). Pacific Geology, 18(4), 16–28. in Russian.

    Google Scholar 

  • Aprelkov, S. Y., & Svyatlovsky, A. Y. (1989). The origin of Avacha Bay in Kamchatka. Pacific Geology, 4, 108–111. in Russian.

    Google Scholar 

  • Avdeiko, G. P., & Bergal-Kuvikas, O. V. (2015). The geodynamic conditions for the generation of adakites and Nb-rich basalts (NEAB) in Kamchatka. Journal of Volcanology and Seismology, 9(5), 295–306. https://doi.org/10.1134/S0742046315050024

    Article  Google Scholar 

  • Avdeiko, G. P., Palueva, A. A., & Khleborodova, O. A. (2006). Geodynamic conditions of volcanism and magma formation in the Kurile-Kamchatka island-arc system. Petrology, 14(3), 230–246. https://doi.org/10.1134/S0869591106030027

    Article  Google Scholar 

  • Balyev, EYu., Perepelov, A. B., Ananev, V. V., & Taktaev, B. N. (1984). High alkaly andesites in frontal part of island arc (Kamchatka). Report of Academy USSR, 274(4), 977–981. in Russian.

    Google Scholar 

  • Barde-Cabusson, S., Gottsmann, J., Martí, et al. (2014). Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements. Bulletin of Volcanology, 76(1), 788. https://doi.org/10.1007/s00445-013-0788-0

    Article  Google Scholar 

  • Bazanova, L. I., Puzankov, M. Yu., Dirksen, O. V., Kulich, R. P., & Kartasheva, E. V. (2012). Lava flows of Koryaksky volcano in Holocene: success and problems of the dating. Materials of the annual volcanologist day «Volcanism and related process». Petropavlovsk-Kamchatsky (pp. 11–18) (in Russian).

  • Ben-Avraham, Z. V. I., Nur, A., Jones, D., & Cox, A. (1981). Continental accretion: From oceanic plateaus to allochthonous terranes. Science, 213(4503), 47–54. https://doi.org/10.1126/science.213.4503.47

    Article  Google Scholar 

  • Bergal-Kuvikas, O., Bindeman, I., Chugaev, A., Larionova, Yu., Khubaeva, O., & Perepelov, A. (2021). Monogenetic volcanism at Malko-Petropavlovsk zone of the transverse dislocation (Kamchatka). Mendeley Data. https://doi.org/10.17632/8d69jr8yjv.1

    Article  Google Scholar 

  • Bergal-Kuvikas, O., Leonov, V., Rogozin, A., Bindeman, I., Kliapitskiy, E., & Churikova, T. (2019). Stratigraphy, structure and geology of Late Miocene Verkhneavachinskaya caldera with basaltic–andesitic ignimbrites at Eastern Kamchatka. Journal of Geosciences, 64, 229–250. https://doi.org/10.3190/jgeosci.295

    Article  Google Scholar 

  • Bergal-Kuvikas, O., Nakagawa, M., Kuritani, T., et al. (2017). A petrological and geochemical study on time-series samples from Klyuchevskoy volcano, Kamchatka arc. Contributions to Mineralogy and Petrology, 172(5), 35. https://doi.org/10.1007/s00410-017-1347-z

    Article  Google Scholar 

  • Bindeman, I. N., Anikin, L. P., & Schmitt, A. K. (2016). Archean Xenocrysts in Modern Volcanic Rocks from Kamchatka: Insight into the Basement and Paleodrainage. Journal of Geology, 124(2), 247–253. https://doi.org/10.1086/684833

    Article  Google Scholar 

  • Bindeman, I. N., Vinogradov, V. I., Valley, J. W., Wooden, J. L., & Natalin, B. A. (2002). Archean protolith and accretion of crust in Kamchatka: SHRIMP dating of zircons from metamorphic rocks of Sredinny and Ganal Massifs. Journal of Geology, 110, 271–289. https://doi.org/10.1086/339532

    Article  Google Scholar 

  • Bushenkova, N., Koulakov, I., Senyukov, S., et al. (2019). Tomographic images of magma chambers beneath the Avacha and Koryaksky volcanoes in Kamchatka. Journal of Geophysical Research: Solid Earth, 124(9), 9694–9713. https://doi.org/10.1029/2019JB017952

    Article  Google Scholar 

  • Calmus, T., Pallares, C., Maury, R. C., et al. (2011). Volcanic markers of the post-subduction evolution of Baja California and Sonora, Mexico: Slab tearing versus lithospheric rupture of the Gulf of California. Pure and Applied Geophysics, 168(8), 1303–1330. https://doi.org/10.1007/s00024-010-0204-z

    Article  Google Scholar 

  • Chebrova, A. Y., Chemarev, A. S., Matveenko, E. A., & Chebrov, D. V. (2020). Seismological data information system in Kamchatka branch of GS RAS: Organization principles, main elements and key functions. Geophysical Research, 21(3), 66–91.

    Google Scholar 

  • Chebrov, V. N., Droznin, D. V., Kugaenko, Y. A., et al. (2013). The system of detailed seismological observations in Kamchatka in 2011. Journal of Volcanology and Seismology, 7(1), 16–36. https://doi.org/10.1134/S0742046313010028

    Article  Google Scholar 

  • Chekhovich, V. D., & Sukhov, A. N. (2006). Breakup of the Late Cretaceous Achaivayam-Valagin volcanic arc in the Paleocene (terranes of southern Koryakia and eastern Kamchatka). Doklady Earth Sciences, 409(2), 893. https://doi.org/10.1134/S1028334X06060122

    Article  Google Scholar 

  • Chernyshev, I. V., Chugaev, A. V., & Shatagin, K. N. (2007). High-precision Pb isotope analysis by multicollector-ICP-mass-spectrometry using 205Tl/203Tl normalization: Optimization and calibration of the method for the studies of Pb isotope variations. Geochemistry International, 45, 1065–1076. https://doi.org/10.1134/S0016702907110018

    Article  Google Scholar 

  • Chudaev, O. V., Chelnokov, G. A., Bragin, I. V., et al. (2016). Geochemical features of major and rare-earth element behavior in the Paratunka and Bol’shebannyi hydrothermal systems of Kamchatka. Russian Journal of Pacific Geology, 10(6), 458–475. https://doi.org/10.1134/S1819714016060026

    Article  Google Scholar 

  • Chudaev, O.V., Chudaeva, V.A., Karpov, G.A., & Edmunds, S.P. (2000). Geochemistry of water of the basic geothermal area of Kamchatka. Dalnauka. Vladivostok. (p. 157) (in Russian).

  • Chugaev, A. V., Chernyshev, I. V., Lebedev, V. A., & Eremina, A. V. (2013). Lead Isotope composition and origin of the quaternary lavas of Elbrus Volcano, the Greater Caucasus: High-precision MC-ICP-MS data. Petrology, 21, 16–27. https://doi.org/10.1134/S0869591113010037

    Article  Google Scholar 

  • Churikov, V. A., & Kuzmin, Y. O. (1998). Relation between deformation and seismicity in the active fault zone of Kamchatka, Russia. Geophysical Journal International, 133(3), 607–614. https://doi.org/10.1046/j.1365-246X.1998.00511.x

    Article  Google Scholar 

  • Churikova, T., Dorendorf, F., & Wörner, G. (2001). Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. Journal of Petrology, 42(8), 1567–1593. https://doi.org/10.1093/petrology/42.8.1567

    Article  Google Scholar 

  • Connor, C. B., Conway, F. M., & Sigurdsson, H. (2000). Basaltic volcanic fields. Encyclopedia of Volcanoes, 331–343.

  • Dirksen, O. V. (2009). Late Quaternary Areal Volcanism of Kamchatka. Doctoral dissertation, Sankt-Petersburg State University (p. 171) (in Russian).

  • Dmitriev, V. D., & Ezhov, B. V. (1977). About question of genesis of Avacha bay. Questions of Geography of Kamchatka, 7, 45–47. in Russian.

    Google Scholar 

  • Dorendorf, F., Churikova, T., Koloskov, A., & Wörner, G. (2000). Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): Volcanic geology and geochemical evolution. Journal of Volcanology and Geothermal Research, 104(1–4), 131–151. https://doi.org/10.1016/S0377-0273(00)00203-1

    Article  Google Scholar 

  • Dubik, Yu. M., & Ogorodov, N. V. (1970). Volcanic cone in Avacha bay. Questions of Geography of Kamchatka, 6, 171–172. in Russian.

    Google Scholar 

  • Duggen, S., Portnyagin, M., Baker, J., et al. (2007). Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting. Geochimica Et Cosmochimica Acta, 71(2), 452–480. https://doi.org/10.1016/j.gca.2006.09.018

    Article  Google Scholar 

  • Emelyanova, T. A., & Lelikov, E. P. (2013). Volcanism as an indicator of a depth mechanism for the formation of the Seas of Japan and Okhotsk. Russian Journal of Pacific Geology, 7(2), 124–132. https://doi.org/10.1134/S1819714013020036

    Article  Google Scholar 

  • Favorskaya, M. A., Volchanskaya, I. K., Frich-har, D. I., Baskina, V. A., & Dudykina, A. S. (1965). Magmatism of south-east Kamchatka and their relantion with tectonic activation. Moscow. Nauka. p. 151 (in Russian).

  • Federal State Statistics Service. https://eng.gks.ru. Accessed 26 Oct 2020.

  • Ferrari, L., Rosas-Elguera, J., Delgado‐Granados, H. (2000). Late Miocene to Quaternary extension at the northern boundary of the Jalisco block, western Mexico: The Tepic-Zacoalco rift revised. Special papers. Geologicl society of America. (pp. 41–64).

  • Florensky, I. V., & Bazanova, L. I. (1989). Volcanism during cenozoic time in South-East of Kamchatka (Beregovoy ridge). Volcanology and Seismology, 6, 30–41. in Russian.

    Google Scholar 

  • Gall, H., Furman, T., Hanan, B., et al. (2021). Post-delamination magmatism in south-central Anatolia. Lithos. https://doi.org/10.1016/j.lithos.2021.106299

    Article  Google Scholar 

  • Gazel, E., Carr, M. J., Hoernle, K., Feigenson, et al. (2009). Galapagos-OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2008GC002246

    Article  Google Scholar 

  • Geological, geophysical atlas of the Kurile Kamchatka island arc. (1987). VSEGEI. Leningrad (pp. 36) (in Russian).

  • Geological map of Russian Federation. (2000). Scale 1:200 000. Issue Sothern Kamchatka. Lists N-57-XXVII, N-57-XXXIII. VSEGEI. Sankt-Petersburg (in Russian).

  • Geology of USSR. (1967). XXXI. Kamchatka, Komandor and Kurile islands. G.M. Vlasov (Ed.). Moscow. Nedra (p. 733) (in Russian)

  • Global volcanism program (GVP). (2021). https://volcano.si.edu. Accessed 01 Mar 2021.

  • Gontovaya, L. I., Popruzhenko, S. V., & Nizkous, I. V. (2010). Upper mantle structure in the ocean-continent transition zone: Kamchatka. Journal of Volcanology and Seismology, 4(4), 232–247. https://doi.org/10.1134/S0742046310040020

    Article  Google Scholar 

  • Gorbatov, A., Kostoglodov, V., Suárez, G., & Gordeev, E. (1997). Seismicity and structure of the Kamchatka subduction zone. Journal of Geophysical Research: Solid Earth, 102(B8), 17883–17898. https://doi.org/10.1029/96JB03491

    Article  Google Scholar 

  • Gordeev, E. I., & Bergal-Kuvikas, O. V. (2022). Structure of subduction zone and volcanism on Kamchatka. Doklady of the Earth Sciences, 2(502), 26–30. https://doi.org/10.31857/S2686739722020086

    Article  Google Scholar 

  • Grib, E. N. (1985). The andesites of Mount Mishennaya. Questions of Geography of Kamchatka, 9, 130–133. in Russian.

    Google Scholar 

  • Grib, E. N., Delemen, I. F., & Fedotov, S. A. (1986). The Structure, Composition, and Origin of the Andesite Dome of Mount Mishennaya, Kamchatka. Vulkanologiya i Seismologiya, 6, 29–44 (in Russian).

    Google Scholar 

  • Gutiérrez, F., Gioncada, A., Ferran, O. G., Lahsen, A., & Mazzuoli, R. (2005). The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): An example of volcanism associated with ridge–trench collision environment. Journal of Volcanology and Geothermal Research, 145(3–4), 207–233. https://doi.org/10.1016/j.jvolgeores.2005.01.014

    Article  Google Scholar 

  • Hamilton, W. B. (1994). Subduction systems and magmatism. Geological Society, London, Special Publications, 81(1), 3–28.

    Article  Google Scholar 

  • Hart, S. R. (1984). A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971), 753–757. https://doi.org/10.1038/309753a0

    Article  Google Scholar 

  • Helz, R. T., & Thornber, C. R. (1987). Geothermometry of Kilauea Iki lava lake, Hawaii. Bulletin of volcanology, 49(5), 651–668.

    Article  Google Scholar 

  • Holocene volcanism of Kamchatka. http://geoportal.kscnet.ru/volcanoes/geoservices/hvolc. Accessed 21 Oct 2020.

  • Hourigan, J. K., Brandon, M. T., Soloviev, A. V., et al. (2009). Eocene arc-continent collision and crustal consolidation in Kamchatka, Russian Far East. American Journal of Science, 309, 333–396. https://doi.org/10.2475/05.2009.01

    Article  Google Scholar 

  • Johnston, S. T., & Thorkelson, D. J. (1997). Cocos-Nazca slab window beneath central America. Earth and Planetary Science Letters, 146(3–4), 465–474. https://doi.org/10.1016/S0012-821X(96)00242-7

    Article  Google Scholar 

  • Khanchuk, A. I., Kemkin, I. V., & Kruk, N. N. (2016). The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences, 120, 117–138. https://doi.org/10.1016/j.jseaes.2015.10.023

    Article  Google Scholar 

  • Kimura, J. I., & Yoshida, T. (2006). Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc. Journal of Petrology, 47(11), 2185–2232. https://doi.org/10.1093/petrology/egl041

    Article  Google Scholar 

  • Kinoshita, O. (1999). A migration model of magmatism explaining a ridge subduction, and its details on a statistical analysis of the granite ages in Cretaceous Southwest Japan. The Island Arc, 8, 181–189. https://doi.org/10.1046/j.1440-1738.1999.00230.x

    Article  Google Scholar 

  • Konstantinovskaya, E. (2011). Early Eocene arc–continent collision in Kamchatka, Russia: structural evolution and geodynamic model. Arc-Continent Collision. https://doi.org/10.1007/978-3-540-88558-0_9

    Article  Google Scholar 

  • Koyama, M., & Umino, S. (1991). Why does the Higashi-Izu monogenetic volcano group exist in the Izu Peninsula? Relationships between late Quaternary volcanism and tectonics in the northern tip of the Izu-Bonin arc. Journal of Physics of the Earth, 39(1), 391–420. https://doi.org/10.4294/jpe1952.39.391

    Article  Google Scholar 

  • Kozhurin, A. I., Ponomareva, V. V., & Pinegina, T. K. (2008). Active faulting in the south of Central Kamchatka. Bulletin of Kamchatka Regional Association Educational-Scientific Center. Earth Sciences, 2, 10–27. in Russian.

    Google Scholar 

  • Kozhurin, A., & Zelenin, E. (2017). An extending island arc: The case of Kamchatka. Tectonophysics, 706, 91–102. https://doi.org/10.1016/j.tecto.2017.04.001

    Article  Google Scholar 

  • Krasheninnikov, S. P., Bazanova, L. I., Ponomareva, V. V., & Portnyagin, M. V. (2020). Detailed tephrochronology and composition of major Holocene eruptions from Avachinsky, Kozelsky, and Koryaksky volcanoes in Kamchatka. Journal of Volcanology and Geothermal Research. https://doi.org/10.1016/j.jvolgeores.2020.107088

    Article  Google Scholar 

  • Krohin, E. M. (1954). About sone volcanic structures in valley of Malaya Bustraya, Levaya Topolovaya, Bolshaya Saranaya. Bulleten of Volcanological Station, 22, 39–43. in Russian.

    Google Scholar 

  • Lander, A. V., & Shapiro, M. N. (2007). The origin of the modern Kamchatka subduction zone. Washington DC American Geophysical Union Geophysical Monograph Series, 172, 57–64. https://doi.org/10.1029/172GM05

    Article  Google Scholar 

  • Larionova, Y. O., Samsonov, A. V., & Shatagin, K. N. (2007). Sources of Archean sanukitoids (high-Mg subalkaline granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr isotopic-geochemical evidence. Petrology, 15(6), 530–550. https://doi.org/10.1134/S0869591107060021

    Article  Google Scholar 

  • Le Corvec, N., Spörli, K. B., Rowland, J., & Lindsay, J. (2013). Spatial distribution and alignments of volcanic centers: Clues to the formation of monogenetic volcanic fields. Earth-Science Reviews, 124, 96–114. https://doi.org/10.1016/j.earscirev.2013.05.005

    Article  Google Scholar 

  • Leonov, V. L., & Rogozin, A. N. (2007). Karymshina, a giant supervolcano caldera in Kamchatka: Boundaries, structure, volume of pyroclastics. Journal of Volcanology and Seismology, 1(5), 296–309. https://doi.org/10.1134/S0742046307050028

    Article  Google Scholar 

  • Levashova, N. M., Shapiro, M. N., Beniamovsky, V. N., & Bazhenov, M. L. (2000). Paleomagnetism and geochronology of the Late Cretaceous-Paleogene island arc complex of the Kronotsky Peninsula, Kamchatka, Russia: Kinematic implications. Tectonics, 19(5), 834–851. https://doi.org/10.1029/1998TC001087

    Article  Google Scholar 

  • Loginov, V.A., Gontovaya, L.I. (2020). Structure of the lithosphere in Avacha-Koryak group of volcano based on geohysical data (Kamchatka). Annual conference to volcanological day «Volcanism and related process» (pp. 107–109) (in Russian).

  • Lustrino, M., Keskin, M., Mattioli, M., et al. (2010). Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadag, SE Turkey. European Journal of Mineralogy, 22(3), 343–362. https://doi.org/10.1127/0935-1221/2010/0022-2024

    Article  Google Scholar 

  • Maccaferri, F., Acocella, V., & Rivalta, E. (2015). How the differential load induced by normal fault scarps controls the distribution of monogenic volcanism. Geophysical Research Letters, 42(18), 7507–7512. https://doi.org/10.1002/2015GL065638

    Article  Google Scholar 

  • Marrett, R., & Allmendinger, R. W. (1992). Amount of extension on “small” faults: An example from the Viking graben. Geology, 20(1), 47–50. https://doi.org/10.1130/0091-7613(1992)020%3c0047:AOEOSF%3e2.3.CO;2

    Article  Google Scholar 

  • Martí, J., López, C., Bartolini, S., Becerril, L., & Geyer, A. (2016). Stress controls of monogenetic volcanism: A review. Frontiers in Earth Science, 4, 106. https://doi.org/10.3389/feart.2016.00106

    Article  Google Scholar 

  • Masurenkov, Y. P., Egorova, I. A., & Puzankov, M. Y. (1991). Avachinsky Volcano: Kamchatka active volcanoes. Active Volcanoes of Kamchatka, 2, 246–273. in Russian.

    Google Scholar 

  • McCrory, P. A., Wilson, D. S., & Stanley, R. G. (2009). Continuing evolution of the Pacific-Juan de Fuca-North America slab window system—A trench–ridge–transform example from the Pacific Rim. Tectonophysics, 464(1–4), 30–42. https://doi.org/10.1016/j.tecto.2008.01.018

    Article  Google Scholar 

  • Mitichkin, M. A., Perepelov, A. B., Dril, S. I., Chuvashova, L. A., & Smirnova, E. V. (1998). Rare Earth Elements and the Geochemical Typification of Intrusive Rocks from the Malka-Petropavlovsk Transverse Fault Zone, Kamchatka. Doklady Earth Sciences, 362(7), 974–977. in Russian.

    Google Scholar 

  • Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4), 321–355. https://doi.org/10.2475/ajs.274.4.321

    Article  Google Scholar 

  • Moroz, Y. F., & Gontovaya, L. I. (2003). Deep structure of Avachinsky-Koryaksky group of volcanoes. Volcanology and Seismology, 4, 3–10. in Russian.

    Google Scholar 

  • Moroz, Y. F., & Gontovaya, L. I. (2018). Deep structure of South Kamchatka according to geophysical data. Geodynamics & Tectonophysics, 9(4), 1147–1161. https://doi.org/10.5800/GT-2018-9-4-0387

    Article  Google Scholar 

  • Nakamura, K. (1977). Volcanoes as possible indicators of tectonic stress orientation principle and proposal. Journal of Volcanology and Geothermal Research, 2, 1–16. https://doi.org/10.1016/0377-0273(77)90012-9

    Article  Google Scholar 

  • Németh, K. (2010). Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. What is a Volcano? (vol. 470, p. 43).

  • Németh, K., & Kereszturi, G. (2015). Monogenetic volcanism: Personal views and discussion. International Journal of Earth Sciences, 104(8), 2131–2146. https://doi.org/10.1007/s00531-015-1243-6

    Article  Google Scholar 

  • Nieto-Samaniego, Á. F., Ferrari, L., Alaniz-Alvarez, S. A., Labarthe-Hernández, G., & Rosas-Elguera, J. (1999). Variation of Cenozoic extension and volcanism across the southern Sierra Madre Occidental volcanic province, Mexico. Geological Society of America Bulletin, 111(3), 347–363. https://doi.org/10.1130/0016-7606(1999)111%3c0347:VOCEAV%3e2.3.CO;2

    Article  Google Scholar 

  • Nurmukhamedov, A. G., & Sidorov, M. D. (2019). Deep structure and geothermal potential along the regional profile set from Opala Mountain to Vakhil’River (Southern Kamchatka). IOP Conference Series: Earth and Environmental Science, 249(1), 012041. https://doi.org/10.1088/1755-1315/249/1/012041

    Article  Google Scholar 

  • Oyan, V., Keskin, M., Lebedev, V. A., et al. (2017). Petrology and Geochemistry of the Quaternary Mafic Volcanism to the NE of Lake Van, Eastern Anatolian Collision Zone, Turkey. Journal of Petrology, 58(9), 1701–1728. https://doi.org/10.1093/petrology/egx070

    Article  Google Scholar 

  • Pardo, N., Macias, J. L., Giordano, G., Cianfarra, P., Avellán, D. R., & Bellatreccia, F. (2009). The∼ 1245 yr BP Asososca maar eruption: The youngest event along the Nejapa-Miraflores volcanic fault, Western Managua, Nicaragua. Journal of Volcanology and Geothermal Research, 184(3–4), 292–312. https://doi.org/10.1016/j.jvolgeores.2009.04.006

    Article  Google Scholar 

  • Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4), 14–48. https://doi.org/10.1016/j.lithos.2007.06.016

    Article  Google Scholar 

  • Pinegina, T. K., Bazanova, L. I., Zelenin, E. A., et al. (2018). Holocene Tsunamis in Avachinsky Bay, Kamchatka, Russia. Pure and Applied Geophysics, 175(4), 1485–1506. https://doi.org/10.1007/s00024-018-1830-0

    Article  Google Scholar 

  • Ponomareva, V. V., Melekestsev, I. V., & Dirksen, O. V. (2006). Sector collapses and large landslides on Late Pleistocene-Holocene volcanoes in Kamchatka, Russia. Journal of Volcanology and Geothermal Research, 158(1–2), 117–138. https://doi.org/10.1016/j.jvolgeores.2006.04.016

    Article  Google Scholar 

  • Popruzhenko, S. V., & Zubin, M. I. (1997). Tectonics and some features of seismicity of the shelf zone of the Avacha Bay and adjacent areas. Volcanology and Seismology., 2, 74–81. in Russian.

    Google Scholar 

  • Putirka, K. D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1), 61–120. https://doi.org/10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Rehkämper, M., & Halliday, A. M. (1998). Accuracy and long-term reproducibility of lead isotopic measurements by MC-ICP-MS using an external method for correction of mass discrimination. International Journal of Mass Spectrometry, 181, 123–133. https://doi.org/10.1016/S1387-3806(98)14170-2

    Article  Google Scholar 

  • Seismological data information system KBGS RAS. http://sdis.emsd.ru/info/earthquakes/catalogue.php. Accessed 1 Nov 2020.

  • Seliverstov, N.I. (1998). The Kamchatka Offshore and Geodynamics of the Kuriles-Kamchatka and the Aleutian Junction. Nauchnyi Mir, Moscow (in Russian).

  • Seliverstov, N. I. (2009). Geodynamics of the Junction Zone of the Kuril–Kamchatka and Aleutian Island Arc. Petropavlovsk-Kamchatsky: KamGU (p. 191) (in Russian).

  • Shatser, A.E. (1987). Cainozoic development of Kamchatka—formation and destruction unstable orogenetic uplifts. In Essays of tectonic development of Kamchatka (Belousov V.V. edt). Nauka. M. (pp. 109–164) (in Russian).

  • Sheimovich, V. S., Golovin, D. I., & Gertsev, D. O. (2007). The andesite extrusion of Mount Mishennaya, Kamchatka, and its age. Journal of Volcanology and Seismology, 1(4), 248–253. https://doi.org/10.1134/S0742046307040033

    Article  Google Scholar 

  • Sheimovich, V.S., & Patoka, M.G. (2000). Geological setting of zones with active cenozoic volcanism. Moscow: Geos, 208 (in Russian).

  • Sheimovich, V. A., Puzankov, Yu. M., Puzankov, MYu., Golovin, D. I., Bobrov, V. A., & Moskaleva, S. V. (2005). Manifestations of alkaline magmatism in the Avacha bay area. Volcanology and Seismilogy, 36(6), 36–46. in Russian.

    Google Scholar 

  • Sheimovich, V. S., & Sidorov, M. D. (2000). Structure of the basement under the southest Kamchatka volcanic belt. Volcanology and Seismology, 5, 28–35. in Russian.

    Google Scholar 

  • Smith, I. E., Brenna, M., & Cronin, S. J. (2021). The magma source of small-scale intraplate monogenetic volcanic systems in northern New Zealand. Journal of Volcanology and Geothermal Research, 418, 107326. https://doi.org/10.1016/j.jvolgeores.2021.107326

    Article  Google Scholar 

  • Smith, I. E. M., & Németh, K. (2017). Source to surface model of monogenetic volcanism: A critical review. Geological Society, London, Special Publications, 446(1), 1–28. https://doi.org/10.1144/SP446.14

    Article  Google Scholar 

  • Sugrobov, V. M., & Yanovsky, F. A. (1991). Geothermal field of Kamchatka., heat Losses by volcanoes and hydroterms. In Active volcanoes of Kamchatka. S.A. Fedotov, & Yu.P. Masurenkov (Eds.) (vol. 1, pp. 67–74).

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Svyatlovsky, A. E. (1956). Yuzhno-Bustrinsky range. Works of Volcanology Laboratory, 12, 110–190. in Russina.

    Google Scholar 

  • Syracuse, E. M., & Abers, G. A. (2006). Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2005GC001045

    Article  Google Scholar 

  • Takada, A. (1994). The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. Journal of Geophysical Research: Solid Earth, 99(B7), 13563–13573.

    Article  Google Scholar 

  • Tsukanov, N. V., Palechek, T. N., Soloviev, A. V., & Savelyev, D. P. (2014). Tectono-stratigraphic complexes of the southern segment of the Kronotsky paleoarc (East Kamchatka): Their structure, age, and composition. Pacific Geology, 6(33), 3–17. in Russian.

    Google Scholar 

  • Valentine, G. A., & Connor, C. B. (2015). Basaltic volcanic fields. In The encyclopedia of volcanoes (pp. 423–439). Academic Press.

  • Yamasaki, T., & Gernigon, L. (2009). Styles of lithospheric extension controlled by underplated mafic bodies. Tectonophysics, 468(1–4), 169–184. https://doi.org/10.1016/j.tecto.2008.04.024

    Article  Google Scholar 

Download references

Acknowledgements

Personal acknowledges are to Bazanova L.I., Dirksen O.V., Melekestsev I.V., Delemen I.F. for discussions and consultations of main structure of geological setting in MPZ. Thank you Kulish R., Uteshev I., Petrov O., Bergal V. for helping in organizations field works. We appreciated critical and constructive reviews by Nemeth K. Marti J. and Rabinovich A. for editorial handling.

Funding

We are thankful for the grant 19-17-00241 from the Russian Science Foundation for support of OB-K and IB, and the megagrant of the Ministry of Education and Science of the Russian Federation (no. 14.W03.31.0033) for support of fieldworks.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. OB-K wrote the original draft. IB reviewed and edited the draft. CA prepared lead isotopes and improved interpretation of isotopic data. LY estimated Sr–Nd isotopic ratios. PA obtained trace element geochemistry. KO worked with geophysical data and organized fieldwork.

Corresponding author

Correspondence to Olga Bergal-Kuvikas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergal-Kuvikas, O., Bindeman, I., Chugaev, A. et al. Pleistocene-Holocene Monogenetic Volcanism at the Malko-Petropavlovsk Zone of Transverse Dislocations on Kamchatka: Geochemical Features and Genesis. Pure Appl. Geophys. 179, 3989–4011 (2022). https://doi.org/10.1007/s00024-022-02956-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02956-7

Keywords

Navigation