Skip to main content
Log in

Delineation and Quasi-3D Modeling of Gold Mineralization Using Self-Potential (SP), Electrical Resistivity Tomography (ERT), and Induced Polarization (IP) Methods in Yassa Village, Adamawa, Cameroon: A Case Study

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Lom volcano-sedimentary formation belongs to the Adamawa-Yadé (AYD) domain of the Pan-African fold belt in Cameroon. It is a geological formation presenting mineral deposits of economic potential such as gold and diamonds. The area is under small-scale and many artisanal gold mines. A geophysical study was carried out in the village Yassa, a locality situated within this geological formation, close to an artisanal mining excavation in order to define and propose a model of potential mineralized targets. The geophysical study involved the combination of electrical resistivity tomography (ERT), induced polarization (IP), and self-potential (SP) methods. The acquisition of data consisted of 15 electrical tomography lines in Schlumberger arrangement and a collection of SP data along these profiles in the absence of injected current. The anomalies of possible sulfide mineralization were found at a depth of about 10–25 m with a major NE–SW trend by applying the Euler deconvolution to the SP data. The ERT and IP data allow the production of the 2D inversion which is interpolated to obtain pseudo-models of the isosurface of potential mineralization. The correlation of geological information and the 3D isosurface pseudo-models indicates the characterization of zones with sulfides, with high chargeability values (≥ 30 mV/V). A body exhibiting this high chargeability correlating with a low resistivity (≤ 60 Ω m) is observed south of the study area. This body linked to a sulfurized zone presents its roof at an average depth of 13 m with a lateral extension in depth and a NE–SW orientation in agreement with the overall orientation of the area’s major tectonic lines. Another polarizable body, located in the near surface to the north of the study prospect over an average depth of about 10 m, correlates with high resistivity (4500 Ω m), thus characterizing a probable zone of silicification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.

Similar content being viewed by others

References

  • Akanksha, U., Anand, S., Pratima, P. K., & Sharma, S. P. (2019). Delineation of gold mineralization near Lawa village, North Singhbhum Mobile Belt, India, using electrical resistivity imaging, self-potential and low frequency methods. Journal of Applied Geophysics, 172, 103902.

    Google Scholar 

  • Bessoles, B., & Trompette, M. (1980). Géologie de l’Afrique: La chaîne panafricaine, ‘zone mobile d’Afrique Centrale (partie sud) et zone mobile soudanaise’: Mémoire du Bureau de Recherche Géologiques et Minières, vol. 92, p. 396.

  • Carrazza, L. P., Moreira, C. A., & Helene, L. P. I. (2016). Gully cavity identification through electrical resistivity tomography. Revista Brasileira De Geofisica, 34(2), 241–250.

    Article  Google Scholar 

  • Chouteau, M., & Giroux, B. (2006). Géophysique appliquée II GLQ 3202 Méthodes électriques Notes de cours, Ecole Polytechnique.

  • Constable, S. C., & Parker, R. L. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.

    Article  Google Scholar 

  • Cortês, A. R. P., Moreira, C. A., Sampaio Paes, R. A., & Veloso, D. I. K. (2019). Geophysical and metalogenetic modelling of the copper occurrence in Camaqua Sedimentary Basin, Brazilian Southern. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02190-8

    Article  Google Scholar 

  • Côrtes, A. R. P., Moreira, C. A., Veloso, D. I. K., Vieira, L. B., & Bergonzoni, F. A. (2016). Geoelectrical prospecting for a coppersulfide mineralization in the Camaqua sedimentary basin, Southern Brazil. Geofisica Internacional, 55–3, 107–117.

    Google Scholar 

  • Dahlin, T., Rosquist, H., & Leroux, V. (2010). Resistivity – IP for Landfill application. First Break, 28(8), 101–105.

    Article  Google Scholar 

  • Dentith, M., & Mudge, S. T. (2014). Geophysics for the mineral exploration geoscientist (pp. 1–438). Cambridge University Press.

    Book  Google Scholar 

  • Dharmita, H., Sanjit, K. P., Sahendra, S., & Saurabh, S. (2020). Combined self-potential, electrical resistivity tomography and induced polarisation for mapping of gold prospective zones over a part of Babaikundi-Birgaon Axis, North Singhbhum Mobile Belt, India. Exploration Geophysics. https://doi.org/10.1080/08123985.2020.1722026

    Article  Google Scholar 

  • Evans, A. M. (1993). Ore geology and industrial minerals. Blackwell Scientific.

    Google Scholar 

  • Fixman, M. (1980). Charged macromolecules in external fields, I, the sphere. The Journal of Chemical Physics, 72(9), 5177–5186.

    Article  Google Scholar 

  • Ford, K., Keating, P., & Thomas, M. D. (2007). Overview of geophysical signatures associated with Canadian ore deposits. In: W. D. Goodfellow (Ed.), Mineral deposits of Canada: A.

  • Ganwa, A. A. (2005). Les granitoïdes de Méiganga: étude pétrographique, géochimique, structurale, géochronologique. Leur place dans la chaîne panafricaine. Thèse Doctorat d’État ès sciences naturelles, Université de Yaoundé I, p. 162

  • Ganwa, A. A., Siebel, W., Frisch, W., & Shang, C.K. (2009) Geochemistry of magmatic rocks and time constraints on deformational phases and shear zone slip in the Méiganga area, central Cameroon. International Geology Review 53(7), 759–784. http://www.informaworld.com. June 2011.

  • Geotomo Software. (2003). Res2Dinv (v.3.54) for 98/ME/2000/NT/XP. Geoelectrical Imaging 2D and 3D.

  • Gobashy, M., Abdelazeem, M., Abdrabou, M., & Khalil, M. H. (2020). Estimating model parameters from self-potential anomaly of 2D inclined sheet using whale optimization algorithm: applications to mineral exploration and tracing shear zones. Natural Resources Research, 29(1), 499–519.

    Article  Google Scholar 

  • Gobashy, M. M., Eldougdoug, A., Abdelazeem, M., & Abdelhalim, A. (2021). Future development of gold mineralization utilizing integrated geology and aeromagnetic techniques: A case study in the Barramiya Mining District, Central Eastern Desert of Egypt. Natural Resources Research, 30(3), 2007–2028.

    Article  Google Scholar 

  • Gouet, D. H. (2014). Application des méthodes géoélectriques (DC & IP) à l’identification des cibles minières et des aquifères dans la zone de Boutou-colomine (Est – Cameroun), PhD. Thesis, University of Yaoundé I, Yaoundé Cameroon.

  • Helene, L. P. H., Moreira, C. A., & Carrazza, L. P. (2016). Applied geophysics on a soil contaminated site by chromium of a tannery in Motuca (SP). Revista Brasileira De Geofisica, 34(3), 309–317.

    Article  Google Scholar 

  • Kandé, H. L. (2008). Etude Géophysique de la structure de la croute le long du Fossé Tectonique de la Mbéré (Sud Adamaoua-Cameroun). [Ph.D. Thesis] University of Yaoundé I, Yaoundé, Cameroon.

  • Keary, P., & Brooks, M. (1991). An introduction to geophysical exploration (2nd ed., p. 254). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Kühn, C., Brasse, H., & Schwarz, G. (2017). Three-dimensional electrical resistivity image of the volcanic arc in Northern Chile—An appraisal of early magnetotelluric data. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-017-1764-y

    Article  Google Scholar 

  • Lasserre, M. (1961). Carte Géologique de Reconnaissance à L’échelle 1/500 000, Territoire du Cameroun, Ngaoundéré-Est. Dir, Mines Géol. Cameroun, Yaoundé, Cameroun.

  • Loke, M. H. (1994). The Inversion of Two Dimensional Resistivity Data. Ph.D. Thesis, University of Birmingham, Birmingham, p. 122.

  • Loke, M. H. (1999). Electrical imaging surveys for environmental and engineering studies (a practical guide to 2-D and 3-D surveys).

  • Loke, M. H., & Barker, R. D. (1995). Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60, 1682–1690.

    Article  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996a). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996b). Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting, 44, 499–523.

    Article  Google Scholar 

  • Loke, M. H., & Dahlin, T. (2002). A comparison of the Gauss–Newton and quasi-Newton methods in resistivity imaging inversion. Journal of Applied Geophysics, 49, 140–162.

    Article  Google Scholar 

  • Lu, D. B., Wang, F., & Chen, X. D. (2017). An improved ERT approach for the investigation of subsurface structures. Pure and Applied Geophysics, 174, 375. https://doi.org/10.1007/s00024016-1386-9

    Article  Google Scholar 

  • Marjoribanks, R. (2010). Geological methods in mineral exploration and mining. Springer.

    Book  Google Scholar 

  • Meju, M. A. (2002). Electromagnetic exploration for natural ressources: models, case studies and challenges. Surveys Geophysics.

  • Moon, C. J., Whateley, M. E. G., & Evans, A. M. (2006). Introduction to mineral exploration. Backwell Publishing.

    Google Scholar 

  • Moreira, C. A., Borssatto, K., Ilha, L. M., Dos Santos, S. F., & Rosa, F. T. G. (2016a). Geophysical modeling in gold deposit through DC resistivity and induced polarization methods. REM International Engineering Journal, 69(3), 293–299.

    Article  Google Scholar 

  • Moreira, C. A., Carrara, A., Helene, L. P. I., Hansen, M. A. F., Malagutti, F. W., & Dourado, J. C. (2017). Electrical resistivity tomography (ERT) applied in the detection of inorganic contaminants in suspended aquifer in Leme city (Brazil). Revista Brasileira De Geofisica, 35(3), 213–225.

    Article  Google Scholar 

  • Moreira, C. A., Evandro, G. D. S., Ilha, L. M., & Paes, R. A. (2019). Recognition of Sulfides zones in marble mine through comparative analysis of electrical tomography arrangements. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02243-y

    Article  Google Scholar 

  • Moreira, C. A., Lopes, S. M., Schweig, C., & Seixas, A. R. (2012). Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã sedimentary basin, Rio Grande do Sul State, Brazil. Revista Brasileira De Geofisica, 30(2), 169–179.

    Article  Google Scholar 

  • Moreira, C. A., Reis, S. S., Malagutti, F. W., & Hansen, M. A. F. (2016b). Geoelectric modeling of supergenic manganese occurrence in Heliodora region, southern Minas Gerais. Revista Brasileira De Geofisica, 34(3), 299–309.

    Article  Google Scholar 

  • Moreira, C. A., Sampaio, P. R. A., Ilha, L. M., & Bittencourt, J. D. C. (2018). Reassessment of copper mineral occurrence through electrical tomography and pseudo 3D modeling in Camaquã Sedimentary Basin, Southern Brazil. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2019-2

    Article  Google Scholar 

  • Mussett, A. E., & Khan, M. A. (2000). Looking into the earth: An introduction to geological geophysics. Cambridge University Press.

    Book  Google Scholar 

  • Ngando, A. M., Nouayou, R., Tabod, T. C., & Manguelle-Dicoum, E. (2011). Evidence for Precambrian faulting in the Tibati Adamawa region of Cameroon using the audiomagnetotelluric method. Geofísica Internacional, 50, 129–146.

    Google Scholar 

  • Ntep, N. P., Dupuy, J.J., Matip, O., Fogakoh, F. A., & Kalngui, E. (2001). Ressources minérales du Cameroun. Notice explicative de la carte thématique des ressources minérales du Cameroun sur fond géologique. Notice explicative de la CTRMC/FG, MINMEE.

  • Ntep, N. P., Dupuy, J. J., Matip, O., Fogakoh, F. A., & Kalngui, E. (2011). Programme d’Appui au développement des des activités minières. CA-PAM. 2011–2016.

  • Parasnis, D. S. (1997). Principles of applied geophysics (5th ed., pp. 104–176). Chapman and Hall.

    Google Scholar 

  • Pirajno, F. (1992). Hydrothermal mineral deposits: Principles and fundamental concepts for the exploration geologist. Springer.

    Book  Google Scholar 

  • Rakoto, H. A., Rajaomahefasoa, R., Razafiarisera, R., & Razafindrakoto, B. (2019). Evaluation of flake graphite ore using self-potential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar. Journal of Applied Geophysics, 169, 134–141.

    Article  Google Scholar 

  • Regnoult, J. M. (1986). Synthèse géologique du Cameroun. p. 119.

  • Santos, A. F., Borssatto, K., Moreira, C. A., Rosa, F. T. G., & Silva, M. A. (2018). Geoeletric prospection of copper occurrence in folded structures in the Sul-Riograndense shield (Brazil). Revista Brasileira De Geofísica, 36(3), 1–10.

    Article  Google Scholar 

  • Sato, M., & Mooney, A. (1960). The electrochemicam mechanism of sulfide self potentials. Geophysics, 25(1).

  • Schurr, J. M. (1964). On the theory of the dielectric dispersion of spherical colloid particles in electrolyte solution. Journal of Physical Chemistry, 68(9), 2407–2413.

    Article  Google Scholar 

  • Sindirgi, P., & Ôzyalin, S. (2019). Estimating the location of a causative body from a self-potential anomaly using 2D and 3D normalized full gradient and Euler deconvolution. Turkish Journal of Earth Sciences., 28, 640–659. https://doi.org/10.3906/yer-1811-14

    Article  Google Scholar 

  • Soba, D. (1989). La série du Lom: étude géologique et géochronologique d’un bassin volcano-sédimentaire de la chaîne panafricaine à l’Est du Cameroun. Thèse de doctorat d’Etat, Univ. Pierre et Marie Curie, Paris 6, p. 198.

  • Soba, D., Micharde, A., Toteu, S. F., Norman, D. I., Penaye, J., Ngako, V., Nzenti, J. P., & Dautel, D. (1991). Données géochronologiques nouvelles (Rb–Sr, U–Pb, Sm–Nd) sur la zone mobile panafricaine de l’Est Cameroun: âge Protérozoïque supérieur de la série de Lom. Comptes Rendus De L’académie Des Sciences Paris, 315, 1453–1458p.

    Google Scholar 

  • Thompson, D. T. T. (1982). Euler, a new technique for making computer assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Article  Google Scholar 

  • Toteu, S. F., Yongue, F. R., Penaye, J., Tchakounté, J., Seme, M. A. C., Van Schmus, W. R., Deloule, E., & Stendal, H. (2006). U–Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: Consequence for the Pan-African orogenic evolution of the central African fold belt. Journal of African Earth Sciences, 44, 479–493.

    Article  Google Scholar 

  • Veloso, D. I. K., Moreira, C. A., & Côrtes, A. R. P. (2015). Integration of geoelectrical methods in the diagnostic of a diesel contaminated site in Santa Ernestina (SP). Revista Brasileira De Geofisica, 34(3), 667–676.

    Google Scholar 

  • Vicat, J. P., & Bilong, P. (1998). Esquisse géologique du Cameroun. éd., collect. GEOCAM, Press. Univ. Yaoundé I, pp. 3–11.

  • Vieira, L. B., Moreira, C. A., Côrtes, A. R. P., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for induced polarization method in Itapira (Brazil). Geofisica Internacional, 55, 107–117.

    Google Scholar 

  • Yonta, N. C. (2004). Le context géologique des indices de talc de la region de Boumnyebel (Chaîne panafricaine d’Afrique Centrale (p. 231). Thèse de Doct/PhD UNIV Ydé I.

    Google Scholar 

  • Zhang, G., Lü, Q. T., Zhang, G. B., Lin, P. R., Jia, Z. Y., & Suo, K. (2017). Joint interpretation of geological, magnetic, AMT, and ERT data for mineral exploration in the Northeast of Inner Mongolia, China. Pure and Applied Geophysics, 1, 1. https://doi.org/10.1007/s00024-017-1733-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the School of Geology of Mining (EGEM) of Meiganga for the financial support. Their remarks are also addressed to the reviewers for their useful comments that made the manuscript clearer and more relevant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsène Meying.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Embeng, S.B.N., Meying, A., Ndougsa-Mbarga, T. et al. Delineation and Quasi-3D Modeling of Gold Mineralization Using Self-Potential (SP), Electrical Resistivity Tomography (ERT), and Induced Polarization (IP) Methods in Yassa Village, Adamawa, Cameroon: A Case Study. Pure Appl. Geophys. 179, 795–815 (2022). https://doi.org/10.1007/s00024-022-02951-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02951-y

Keywords

Navigation