Skip to main content
Log in

SKS and SKKS Splitting Measurements Beneath the NW Himalaya

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

An experiment on SKS and SKKS splitting is carried out using teleseismic earthquakes recorded at 10 broadband seismic stations deployed in parts of the NW Himalaya. A total of 47 reliable splitting parameters is estimated using rotation correlation and transverse component minimization methods. A large variation of delay time (δt) of 0.3 to 1.6 s and polarization direction (ϕ) of 42° and 98° of the fast wave is obtained. A strong component of fast axes along the strike of the Delhi–Hardwar Ridge (DHR) near the Himalayan foothills is found to be correlated with the structurally controlled strain-induced shearing. The structural fabrics were likely frozen because of induction of past plate tectonics. The orientations of the fast axes surrounding the Main Central Thrust (MCT) are correlated with the foliation and folding caused by strike-orthogonal compression as well as underthrusting of the Indian plate beneath the Himalaya. A low value of 0.3 s delay time is proposed to be caused by multi-layered anisotropy. A two-layered anisotropy model developed for the stations Adibadri, Gaurikund and Chakrata reveals that the directions of fast axes in the shallow and deeper levels are parallel to the strike of the DHR and to the absolute plate motion (APM) vector of the Indian plate, respectively. We thus propose that the anisotropy observed in the NW Himalaya is a combined effect of the fossil anisotropy preserved in the DHR, the mantle flow and the foliation plane arisen due to collision between the Indian and the Eurasian plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barruol, G., & Mainprice, D. (1993). A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves. Physics of the Earth Planetary Interior, 78(3–4), 281–300.

    Google Scholar 

  • Bhukta, K., Khan, P. K., & Mandal, P. (2018). Upper mantle anisotropy inferred from shear wave splitting beneath the Eastern Indian Shield region. Geoscience Frontiers, 9, 1911–1920.

    Google Scholar 

  • Biswal, S., Kumar, S., Roy, S. K., Kumar, M. R., Mohanty, W. K., Parija, M. P., & Paul, A. (2020). Upper mantle anisotropy beneath the Western Segment, NW Indian Himalaya, using shear wave splitting. Lithophere. https://doi.org/10.2113/2020/8856812

    Article  Google Scholar 

  • Bonin, M., Barruol, G., & Bokelmann, G. H. R. (2010). Upper mantle deformation beneath the North American Pacific plate boundary in California from SKS splitting. Journal of Geophysical Research, 115, B04306. https://doi.org/10.1029/2009JB006438.

    Article  Google Scholar 

  • Booth, D. C., & Crampin, S. (1985). Shear-wave polarizations on a curved wave front at an isotropic free-surface. Geophysical Journal of the Royal Astronomical Society, 83, 31–45.

    Google Scholar 

  • Bowman, J. R., & Ando, M. (1987). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal of the Royal Astronomical Society, 88, 25–41.

    Google Scholar 

  • Chamoli, A., Pandey, A. K., Dimri, V. P., & Banerjee, P. (2011). Crustal configuration of the northwest Himalaya based on modeling of gravity data. Pure and Applied Geophyics, 168, 827–844.

    Google Scholar 

  • Clark, M. K., & Royden, L. H. (2000). Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28, 703–706.

    Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions. Geophysical Research Letters, 21, 2191–2194.

    Google Scholar 

  • Duret, F., Shapiro, N. M., Cao, Z., Levin, V., Molnar, P., & Roecker, S. (2010). Surface wave dispersion across Tibet: Direct evidence for radial anisotropy in the crust. Geophysical Research Letters, 37, L16306.

    Google Scholar 

  • England, P., & McKenzie, D. (1982). A thin viscous sheet model for continental deformation. Geophysical Journal of the Royal Astronomical Society, 70, 295–321.

    Google Scholar 

  • England, P. C., & Houseman, G. A. (1989). Extension during continental convergence, with application to the Tibetan plateau. Journal of Geophysical Research, 94, 17561–17579.

    Google Scholar 

  • Godin, L., Grujic, D., Law, R. D., Searle, M. P., & Godin, L. (2006). Channel flow, extrusion, and exhumation in continental collision zones: An introduction. In R. D. Law & M. P. Searle (Eds.), Channel flow, ductile extrusion and exhumation in continental collision zones (Vol. 268, pp. 1–23). Geological Society London Special Publications.

    Google Scholar 

  • Godin, L., & Harris, L. B. (2014). Tracking basement cross-strike discontinuities in the Indian crust beneath the Himalayan orogen using gravity data—Relationship to upper crustal faults. Geophysical Journal International, 198, 198–215.

    Google Scholar 

  • Gripp, A. E., & Gordon, R. G. (1990). Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophysical Research Letters, 17, 1109–1112.

    Google Scholar 

  • Heintz, M., Kumar, P. V., Gaur, V. K., Priestley, K., Rai, S. S., & Prakasam, K. S. (2009). Anisotropy of the Indian continental lithospheric mantle. Geophysical Journal International, 179, 1341–1360.

    Google Scholar 

  • Hirn, A., Jiang, M., Sapin, M., Diaz, J., Nercessian, A., Lu, Q. T., Lepine, J. C., Shi, D. N., Sachpazi, M., Pandey, M. R., Ma, K., & Gallart, J. (1995). Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 375, 571–574.

    Google Scholar 

  • Houseman, G., & England, P. (1993). Crustal thickening versus lateral expulsion in the Indian-Asian continental collision. Journal of Geophysical Research, 98, 12233–12249.

    Google Scholar 

  • Idarraga-Garcia, J., Kendall, J. M., & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9), 3655–3673.

    Google Scholar 

  • Jiménez-Munt, I., & Platt, J. P. (2006). Influence of mantle dynamics on the topographic evolution of the Tibetan Plateau: Results from numerical modelling. Tectonics, 25, TC6002.

    Google Scholar 

  • Kelleher, J., & McCann, W. (1976). Buoyant zones, great earthquakes, and unstable boundaries of subduction. Journal of Geophysical Research, 81, 4885–4898.

    Google Scholar 

  • Khan, P. K., Ansari, M. A., & Mohanty, S. (2014). Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications. Journal of Earth System Science, 123, 1013–1030.

    Google Scholar 

  • Khan, P. K., Ansari, A., & Singh, D. (2017). Insights into the great Mw 7.9 April 25, 2015 Nepal earthquake. Current Science, 113, 2014–2020.

    Google Scholar 

  • Khan, P. K., & Chakraborty, P. P. (2009). Bearing of plate geometry and rheology on shallow-focus mega-thrust seismicity with special reference to 26 December 2004 Sumatra event. Journal of Asian Earth Sciences, 34, 480–491.

    Google Scholar 

  • Khan, P. K., Mohanty, S. P., Chakraborty, P. P., & Singh, R. (2021). Earthquake shocks around Delhi–NCR and the Adjoining Himalayan Front: A seismotectonic perspective. Frontiers in Earth Science, 9, 598784. https://doi.org/10.3389/feart.2021.598784

    Article  Google Scholar 

  • Khan, P. K., Shamim, Sk., Mohanty, S. P., & Aggarwal, S. K. (2019). Change of stress patterns during 2004 MW 9.3 off-Sumatra mega-event: Insights from ridge–trench interaction for plate margin deformation. Geological Journal, 55, 372–389.

    Google Scholar 

  • Kumar, M. R., & Singh, A. (2008). Evidence for plate motion related strain in the Indian shield from shear wave splitting measurements. Journal of Geophysical Research, 113, B08306.

    Google Scholar 

  • Kumar, N., Gautam, K. K., Mishra, M., Kumar, S., & Kumar, P. (2021). Upper mantle anisotropy from shear wave splitting of teleseismic earthquakes in the Kumaun-Garhwal and adjoining area of NW Himalaya. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jaesx.2021.100054

    Article  Google Scholar 

  • Mandal, P. (2011). Upper mantle seismic anisotropy in the intra-continental Kachchh rift zone, Gujarat, India. Tectonophysics, 509, 81–92.

    Google Scholar 

  • Mandal, P. (2016). Shear-wave splitting in Eastern Indian Shield: Detection of a Pan-African suture separating Archean and Meso-Proterozoic terrains. Precambrian Research, 275, 278–285.

    Google Scholar 

  • McNamara, D. E., Owens, T. J., Silver, P. G., & Wu, F. T. (1994). Shear wave anisotropy beneath the Tibetan Plateau. Journal of Geophysical Research, 99, 13655–13665.

    Google Scholar 

  • Meissner, R., Mooney, W. D., & Artemieva, I. (2000). Seismic anisotropy and mantle creep in young orogens. Geophysical Journal International, 149, 1–14.

    Google Scholar 

  • Mitra, S., Kainkaryam, S. M., Padhi, A., Rai, S. S., & Bhattacharya, S. N. (2011). The Himalayan foreland basin crust and upper mantle. Physics of the Earth and Planetary Interior, 184, 34–40.

    Google Scholar 

  • Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Review Geophysics, 31, 357–396.

    Google Scholar 

  • Murphy, M. A., Yin, A., Garrison, T. M., Durr, S. B., & Chen, Z. (1997). Significant crustal shortening in southcentral Tibet prior to the Indo-Asian collision. Geology, 25, 719–722.

    Google Scholar 

  • Nicolas, A., & Christensen, N. I. (1987). Formation of anisotropy upper mantle peridotites: A review. In K. Fuchs & C. Froidevaux (Eds.), Composition, structure and dynamics of the lithosphere–asthenosphere. System, Geodynamic Series (Vol. 16, pp. 111–123). Washington, DC: AGU.

    Google Scholar 

  • Owens, T. J., & Zandt, G. (1997). Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 387, 37–43.

    Google Scholar 

  • Paul, A., Hazarika, D. M., & Wadhawan, M. (2017). Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya. Journal of Asian Earth Sciences, 140, 122–134.

    Google Scholar 

  • Paul, A., Hazarika, D., Wadhawan, M., & Kumar, N. (2021). Upper mantle anisotropy in the Northwest Himalaya and Ladakh-Karakoram zone based on SKS splitting analysis. Journal of Geodynamics. https://doi.org/10.1016/j.jaesx.2021.100054

    Article  Google Scholar 

  • Petrescu, L., Pondrelli, S., Salimbeni, S., Faccenda, M., The Alps Array Working Group. (2020). Mantle flow below the central and greater Alpine region: Insights from SKS anisotropy analysis at AlpArray and permanent stations. Solid Earth, 11, 1275–1290.

    Google Scholar 

  • Rai, A., Rai, S. S., & Gaur, V. K. (2008). Crustal stress patters: Analysis of Ps splitting for seismic anisotropy. Current Science, 94, 911–915.

    Google Scholar 

  • Rai, S. S., Priestley, K., Gaur, V. K., Mitra, S., Singh, M. P., & Searle, M. (2006). Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophysical Research Letters, 33, L15308. https://doi.org/10.1029/2006GL026076,2006

    Article  Google Scholar 

  • Ramesh, D. S., Bharthur, R. N., Prakasam, K. S., Srinagesh, D., Rai, S. S., & Gaur, V. K. (1996). Predominance of plate motion related strain in the south Indian shield. Current Science, 70, 843–847.

    Google Scholar 

  • Roy, S. K., Srinagesh, D., & Kumar, M. R. (2014). Upper and lower mantle anisotropy inferred from comprehensive SKS and SKKS splitting measurements from India. Earth Planetary Science Letters, 392, 192–206.

    Google Scholar 

  • Roy, S. K., Srinagesh, D., Saikia, D., Singh, A., & Kumar, M. R. (2012). Seismic anisotropy beneath the eastern Dharwarcraton. Lithosphere, 4, 259–268.

    Google Scholar 

  • Royden, L. (1996). Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. Journal of Geophysical Research, 101, 17679–17705.

    Google Scholar 

  • Saikia, D., Kumar, M. R., Singh, A., Mohan, G., & Dattatrayam, R. S. (2010). Seismic anisotropy beneath the Indian continent from splitting of direct S waves. Journal of Geophysical Research, 115, B12315.

    Google Scholar 

  • Sandvol, E., Ni, J., Kind, R., & Zhao, W. (1997). Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. Journal of Geophysical Research, 102, 17813–17823.

    Google Scholar 

  • Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Review Geophysics, 37, 65–106.

    Google Scholar 

  • Shapiro, N. M., Ritzwoller, M. H., Molnar, P., & Levin, V. (2004). Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 304, 233–235.

    Google Scholar 

  • Silver, P. G. (1996). Seismic anisotropy beneath the continents: Probing the depths of Geology. Annual Review of Earth and Planetary Sciences, 24, 385–432.

    Google Scholar 

  • Silver, P. G., & Chan, W. W. (1988). Implications for continental structure and evolution from seismic anisotropy. Nature, 335, 34–39.

    Google Scholar 

  • Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and sub-continental mantle deformation. Journal of Geophysical Research, 96, 16429–16454.

    Google Scholar 

  • Silver, P. G., & Savage, M. K. (1994). The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. Geophysical Journal International, 119, 949–963.

    Google Scholar 

  • Singh, A., Kumar, M. R., & Raju, P. S. (2007). Mantle deformation in Sikkim and adjoining Himalaya: Evidences for a complex flow pattern. Physics of the Earth and Planetary Interior, 164, 232–241.

    Google Scholar 

  • Singh, A., Kumar, M. R., Raju, P. S., & Ramesh, D. S. (2006). Shear wave anisotropy of the northeast Indian lithosphere. Geophysical Research Letters, 33, L16302.

    Google Scholar 

  • Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibetan Plateau. Science, 294, 1671–1677.

    Google Scholar 

  • Valdiya, K. S. (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian Plains. Tectonophysics, 32, 353–386.

    Google Scholar 

  • Vauchez, A., Barruol, G., & Tommasi, A. (1997). Why do continents break-up parallel to ancient orogenic belts? Terra Nova, 9, 62–66.

    Google Scholar 

  • Vinnik, L., Green, R. W. E., & Nicolaysen, L. O. (1996a). Seismic constraints on dynamics of the mantle of the Kaapvaalcraton. Physics of the Earth and Planetary Interior, 95, 139–151.

    Google Scholar 

  • Vinnik, L., Kiselev, S., Weber, M., Oreshin, S., & Makeyeva, L. (2012). Frozen and active seismic anisotropy beneath southern Africa. Geophysical Research Letters, 39, L08301.

    Google Scholar 

  • Vinnik, L., Kosarev, G., & Petersen, N. (1996b). Mantle transition zone beneath Eurasia. Geophysical Research Letters, 23, 1485–1488.

    Google Scholar 

  • Vinnik, L., Singh, A., Kiselev, S., & Kumar, M. R. (2007). Upper mantle beneath foothills of the western Himalaya: Subducted lithospheric slab or a keel of the Indian shield? Geophysical Journal International, 171, 1162–1171.

    Google Scholar 

  • Wüstefeld, A., & Bokelmann, G. (2007). Null detection and weak anisotropy in shear-wave splitting. Bulletin of the Seismological Society of America, 97, 1204–1211.

    Google Scholar 

  • Wüstefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computer Geoscience, 34, 515–528.

    Google Scholar 

  • Zhang, S., & Karato, S. (1995). Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375, 774–777.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Wadia Institute of Himalayan Geology, Dehradun, India, for providing the broadband teleseismic data recorded at 10 broadband seismic stations in the NW Himalaya. The first author is thankful to Shri Rakesh Singh Gosain for his sincere support during teleseismic data extraction. We are also thankful to both the anonymous reviewers for their comments and suggestions, which improved the manuscript to a large extent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosanta K. Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4147 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhukta, K., Paul, A. & Khan, P.K. SKS and SKKS Splitting Measurements Beneath the NW Himalaya. Pure Appl. Geophys. 179, 641–661 (2022). https://doi.org/10.1007/s00024-021-02935-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02935-4

Keywords

Navigation