Skip to main content
Log in

Three-Dimensional Finite-Element Analysis of Magnetotelluric Data Using Coulomb-Gauged Potentials in General Anisotropic Media

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The magnetotelluric (MT) method has been widely used in geophysical electromagnetic (EM) exploration. However, complex geometries and anisotropic structures still pose challenges for the simulations of 3D MT problems. This study presents a nodal finite-element (FE) solution to simulate 3D MT responses in 3D conductivity structures with general anisotropy. The method is based on the \({\mathbf{A}} - \psi\) decomposition of the electric field. The computational domain is discretized into hexahedral elements. The linear system equations that result from the FE discretization are solved by iterative solvers. We designed three examples to test the performance of the algorithm in this study. For the first example, we compare our results with those of other scholars to validate the effectiveness of the procedure. For the second example, the convergence behaviors of different iterative solvers with different preconditioners are tested. For the third example, a complex model is designed to demonstrate the robustness and effectiveness of the proposed code. Numerical experiments show that the convergence rate of the iterative solver of the \({\mathbf{A}} - \psi\) method is very fast, especially at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y., & Pralet, S. (2006). Hybrid scheduling for the parallel solution of linear systems. Parallel Computing., 32(2), 136–156.

    Article  Google Scholar 

  • Ansari, S., & Farquharson, C. G. (2014). 3D finite-element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids. Geophysics, 79(4), E149–E165.

    Article  Google Scholar 

  • Badea, E. A., Everett, M. E., Newman, G. A., & Biro, O. (2001). Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3), 786–799.

    Article  Google Scholar 

  • Brasse, H., Kapinos, G., Li, Y. G., Mutschard, L., Soyer, W., & Eydam, D. (2009). Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions. Physics of the Earth and Planetary Interiors., 173(1–2), 7–16.

    Article  Google Scholar 

  • Cai, H. Z., Hu, X. Y., Li, J. H., Endo, M., & Xiong, B. (2017). Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh. Computers & Geosciences., 99, 125–134.

    Article  Google Scholar 

  • Cai, H. Z., Xiong, B., Han, M., & Zhdanov, M. (2014). 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method. Computers & Geosciences., 73, 164–176.

    Article  Google Scholar 

  • Cai, H. Z., Xiong, B., & Zhdanov, M. (2015). Three-dimensional marine controlled-source electromagnetic modelling in anisotropic medium using finite element method. Chinese Journal of Geophysics-Chinese Edition., 58(8), 2839–2850.

    Google Scholar 

  • Farquharson, C. G., & Craven, J. A. (2009). Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada. Journal of Applied Geophysics., 68(4), 450–458.

    Article  Google Scholar 

  • Farquharson, C. G., & Miensopust, M. P. (2011). Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction. Journal of Applied Geophysics., 75(4), 699–710.

    Article  Google Scholar 

  • Haber, E., Ascher, U., Aruliah, D., & Oldenburg, D. (2000). Fast simulation of 3D electromagnetic problems using potentials. Journal of Computational Physics., 163(1), 150–171.

    Article  Google Scholar 

  • Han, B., Li, Y., & Li, G. (2018). 3D forward modeling of magnetotelluric fields in general anisotropic media and its numerical implementation in Julia. Geophysics, 83(4), F29–F40.

    Article  Google Scholar 

  • Harinarayana, T., Azeez, K. A., Murthy, D., Veeraswamy, K., Rao, S. E., Manoj, C., & Naganjaneyulu, K. (2006). Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. Journal of Applied Geophysics., 58(4), 280–295.

    Article  Google Scholar 

  • Hou, J. S., Mallan, R. K., & Torres-Verdin, C. (2006). Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials. Geophysics, 71(5), G225–G233.

    Article  Google Scholar 

  • Jaysaval, P., Shantsev, D. V., de Ryhove, S. D., & Bratteland, T. (2016). Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner. Geophysical Journal International., 207(3), 1554–1572.

    Article  Google Scholar 

  • Jin, J. M. (2002). The finite element method in electromagnetics. Wiley.

    Google Scholar 

  • Kordy, M., Wannamaker, P., Maris, V., Cherkaev, E., & Hill, G. (2016). 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers–Part I: Forward problem and parameter Jacobians. Geophysical Journal International., 204(1), 74–93.

    Article  Google Scholar 

  • Liu, C. S., Ren, Z. Y., Tang, J. T., & Yan, Y. (2008). Three-dimensional magnetotellurics modeling using edge-based finite-element unstructured meshes. Applied Geophysics., 5(3), 170–180.

    Article  Google Scholar 

  • Liu, Y., Xu, Z. H., & Li, Y. G. (2018). Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media. Journal of Applied Geophysics., 151, 113–124.

    Article  Google Scholar 

  • Liu, Y. H., & Yin, C. C. (2013). Electromagnetic divergence correction for 3D anisotropic EM modeling. Journal of Applied Geophysics., 96, 19–27.

    Article  Google Scholar 

  • Mackie, R. L., Smith, J. T., & Madden, T. R. (1994). Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example. Radio Science., 29(4), 923–935.

    Article  Google Scholar 

  • Martí, A. (2014). The role of electrical anisotropy in magnetotelluric responses: From modelling and dimensionality analysis to inversion and interpretation. Surveys in Geophysics., 35(1), 179–218.

    Article  Google Scholar 

  • Mitsuhata, Y., Matsuo, K., & Minegishi, M. (2003). Magnetotelluric survey for exploration of a volcanic-rock reservoir in the Yurihara oil and gas field, Japan. Geophysical Prospecting., 47(2), 195–218.

    Article  Google Scholar 

  • Mitsuhata, Y., & Uchida, T. (2004). 3D magnetotelluric modeling using the T-Ω finite-element method. Geophysics, 69, 108–119.

    Article  Google Scholar 

  • Mogi, T. (1996). Three-dimensional modeling of magnetotelluric data using finite element method. Journal of Applied Geophysics., 35(2–3), 185–189.

    Article  Google Scholar 

  • Mukherjee, S., & Everett, M. E. (2011). 3D controlled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities. Geophysics, 76(4), F215–F226.

    Article  Google Scholar 

  • Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., Son, J.-S., & Suh, J. H. (2007). 3D magnetotelluric modelling including surface topography. Geophysical Prospecting., 55(2), 277–287.

    Article  Google Scholar 

  • Newman, G. A., & Alumbaugh, D. L. (2002). Three-dimensional induction logging problems, Part 2: A finite-difference solution. Geophysics, 67(2), 484–491.

    Article  Google Scholar 

  • Pek, J., & Santos, F. A. (2002). Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media. Computers & Geosciences., 28(8), 939–950.

    Article  Google Scholar 

  • Peng, R. H., Hu, X. Y., Chen, B., & Li, J. H. (2018). 3-D marine controlled-source electromagnetic modeling in electrically anisotropic formations using scattered scalar-vector potentials. IEEE Geoscience and Remote Sensing Letters., 15(10), 1500–1504.

    Article  Google Scholar 

  • Puzyrev, V., Koldan, J., de la Puente, J., Houzeaux, G., Vazquez, M., & Cela, J. M. (2013). A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling. Geophysical Journal International., 193(2), 678–693.

    Article  Google Scholar 

  • Ren, Z. Y., Chen, C. J., Tang, J. T., Zhou, F., Chen, H., Qiu, L. W., & Hu, S. G. (2017). A new integral equation approach for 3D magnetotelluric modeling. Chinese Journal of Geophysics-Chinese Edition., 60(11), 4506–4515.

    Google Scholar 

  • Smith, J. T. (1996). Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator. Geophysics, 61(5), 1319–1324.

    Article  Google Scholar 

  • Tan, H. D., Yu, Q. F., Booker, J., & Wei, W. B. (2003). Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method. Chinese Journal of Geophysics-Chinese Edition., 46(5), 705–711.

    Google Scholar 

  • Varilsuha, D., & Candansayar, M. E. (2018). 3D magnetotelluric modeling by using finite-difference method: Comparison study of different forward modeling approaches. Geophysics, 83(2), WB51–WB60.

    Article  Google Scholar 

  • Volakis, J., Chatterjee, A., & Kempel, L. (1998). Finite element method for electromagnetics: Antennas, microwave circuits, and scattering applications. IEEE Press and Oxford University Press.

    Book  Google Scholar 

  • Volpi, G., Manzella, A., & Fiordelisi, A. (2003). Investigation of geothermal structures by magnetotellurics (MT): An example from the Mt. Amiata area, Italy. Geothermics, 32(2), 131–145.

    Article  Google Scholar 

  • Wang, K., & Tan, H. (2017). Research on the forward modeling of controlled-source audio-frequency magnetotellurics in three-dimensional axial anisotropic media. Journal of Applied Geophysics., 146, 27–36.

    Article  Google Scholar 

  • Weiss, C. J. (2013). Project APhiD: A Lorenz-gauged A-Φ decomposition for parallelized computation of ultra-broadband electromagnetic induction in a fully heterogeneous Earth. Computers & Geosciences., 58, 40–52.

    Article  Google Scholar 

  • Weiss, C. J., & Newman, G. A. (2002). Electromagnetic induction in a fully 3-D anisotropic earth. Geophysics, 67(4), 1104–1114.

    Article  Google Scholar 

  • Xiao, T. J., Huang, X. Y., & Wang, Y. (2019). Three-dimensional magnetotelluric modelling in anisotropic media using the A-phi method. Exploration Geophysics., 50(1), 31–41.

    Article  Google Scholar 

  • Xiao, T. J., Liu, Y., Wang, Y., & Fu, L. Y. (2018). Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method. Journal of Applied Geophysics., 149, 1–9.

    Article  Google Scholar 

  • Xiong, B., Luo, T., & Chen, L. (2018). Direct solutions of 3-D magnetotelluric fields using edge-based finite element. Journal of Applied Geophysics., 159, 204–208.

    Article  Google Scholar 

  • Zhou, J. J., Hu, X. Y., Xiao, T. J., Cai, H. Z., Li, J. H., Peng, R. H., & Long, Z. D. (2021). Three-dimensional edge-based finite element modeling of magnetotelluric data in anisotropic media with a divergence correction. Journal of Applied Geophysics., 189, 104324.

    Article  Google Scholar 

  • Zyserman, F. I., & Santos, J. E. (2000). Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modelling. Journal of Applied Geophysics., 44(4), 337–351.

    Article  Google Scholar 

Download references

Acknowledgements

The project is funded by the National Key Research and Development Program of China (2017YFC0602405) and the National Natural Science Foundation of China (41630317). We thank Dr. Tiaojie Xiao for providing 3D MT anisotropic edge-based FE code and data. We wish to express our gratitude to the editor and two anonymous reviewers for their comments and suggestions that improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyun Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In element e, Eqs. (25)–(28) can be written as

$$\begin{gathered} \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}xj}} \int_{e} {\left( { - \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} - \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial y} - \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + \sqrt { - 1} \omega \mu_{0} \sigma_{xx} N_{i} N_{j} } \right)} } \hfill \\ + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}yj}} } \int_{e} {\left( {\sqrt { - 1} \omega \mu_{0} \sigma_{xy} N_{i} N_{j} } \right)} + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}zj}} } \int_{e} {\left( {\sqrt { - 1} \omega \mu_{0} \sigma_{xz} N_{i} N_{j} } \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {\psi_{j} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{xx} N_{i} \frac{{\partial N_{j} }}{\partial x} + \sigma_{xy} N_{i} \frac{{\partial N_{j} }}{\partial y} + \sigma_{xz} N_{i} \frac{{\partial N_{j} }}{\partial z}} \right)} \hfill \\ = - \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}xj}} } \int_{e} {\left( {N_{i} \delta_{xx} N_{j} } \right) - } \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}yj}} } \int_{e} {\left( {N_{i} \delta_{xy} N_{j} } \right)} - \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}zj}} } \int_{e} {\left( {N_{i} \delta_{xz} N_{j} } \right)} , \hfill \\ \end{gathered}$$
(42)
$$\begin{gathered} \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}yj}} \int_{e} {\left( { - \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} - \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial y} - \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + \sqrt { - 1} \omega \mu_{0} \sigma_{yy} N_{i} N_{j} } \right)} } \hfill \\ + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}xj}} } \int_{e} {\left( {\sqrt { - 1} \omega \mu_{0} \sigma_{yx} N_{i} N_{j} } \right)} + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}zj}} } \int_{e} {\left( {\sqrt { - 1} \omega \mu_{0} \sigma_{yz} N_{i} N_{j} } \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {\psi_{j} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{yx} N_{i} \frac{{\partial N_{j} }}{\partial x} + \sigma_{yy} N_{i} \frac{{\partial N_{j} }}{\partial y} + \sigma_{yz} N_{i} \frac{{\partial N_{j} }}{\partial z}} \right)} \hfill \\ = - \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}xj}} } \int_{e} {\left( {N_{i} \delta_{yx} N_{j} } \right) - } \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}yj}} } \int_{e} {\left( {N_{i} \delta_{yy} N_{j} } \right)} - \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}zj}} } \int_{e} {\left( {N_{i} \delta_{yz} N_{j} } \right)} \hfill \\ \end{gathered}$$
(43)
$$\begin{gathered} \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}zj}} \int_{e} {\left( { - \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} - \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial y} - \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + \sqrt { - 1} \omega \mu_{0} \sigma_{zz} N_{i} N_{j} } \right)} } \hfill \\ + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}xj}} } \int_{e} {\left( {\sqrt { - 1} \omega \mu_{0} \sigma_{zx} N_{i} N_{j} } \right)} + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}yj}} } \int_{e} {\left( {\sqrt { - 1} \omega \mu_{0} \sigma_{zy} N_{i} N_{j} } \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {\psi_{j} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{zx} N_{i} \frac{{\partial N_{j} }}{\partial x} + \sigma_{zy} N_{i} \frac{{\partial N_{j} }}{\partial y} + \sigma_{zz} N_{i} \frac{{\partial N_{j} }}{\partial z}} \right)} \hfill \\ = - \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}xj}} } \int_{e} {\left( {N_{i} \delta_{zx} N_{j} } \right) - } \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}yj}} } \int_{e} {\left( {N_{i} \delta_{zy} N_{j} } \right)} - \mu_{0} \sum\limits_{j = 1}^{8} {{\text{E}}_{{{\text{p}}zj}} } \int_{e} {\left( {N_{i} \delta_{zz} N_{j} } \right)} , \hfill \\ \end{gathered}$$
(44)
$$\begin{gathered} \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}xj}} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{xx} \frac{{\partial N_{i} }}{\partial x}N_{j} + \sigma_{yx} \frac{{\partial N_{i} }}{\partial y}N_{j} + \sigma_{zx} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}yj}} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{xy} \frac{{\partial N_{i} }}{\partial x}N_{j} + \sigma_{yy} \frac{{\partial N_{i} }}{\partial y}N_{j} + \sigma_{zy} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {{\text{A}}_{{{\text{s}}zj}} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{xz} \frac{{\partial N_{i} }}{\partial x}N_{j} + \sigma_{yz} \frac{{\partial N_{i} }}{\partial y}N_{j} + \sigma_{zz} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {\psi_{j} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{xx} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + \sigma_{xy} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial y} + \sigma_{xz} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial z}} \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {\psi_{j} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{yx} \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial x} + \sigma_{yy} \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial y} + \sigma_{yz} \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial z}} \right)} \hfill \\ + \sum\limits_{j = 1}^{8} {\psi_{j} } \int_{e} {\sqrt { - 1} \omega \mu_{0} \left( {\sigma_{zx} \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial x} + \sigma_{zy} \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial y} + \sigma_{zz} \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z}} \right)} \hfill \\ = - \mu_{0} \sum\limits_{j = 1}^{e} {{\text{E}}_{{{\text{p}}xj}} } \int_{e} {\left( {\delta_{xx} \frac{{\partial N_{i} }}{\partial x}N_{j} + \delta_{yx} \frac{{\partial N_{i} }}{\partial y}N_{j} + \delta_{zx} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right)} \hfill \\ - \mu_{0} \sum\limits_{j = 1}^{e} {{\text{E}}_{{{\text{p}}yj}} } \int_{e} {\left( {\delta_{xy} \frac{{\partial N_{i} }}{\partial x}N_{j} + \delta_{yy} \frac{{\partial N_{i} }}{\partial y}N_{j} + \delta_{zy} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right)} \hfill \\ - \mu_{0} \sum\limits_{j = 1}^{e} {{\text{E}}_{{{\text{p}}zj}} } \int_{e} {\left( {\delta_{xz} \frac{{\partial N_{i} }}{\partial x}N_{j} + \delta_{yz} \frac{{\partial N_{i} }}{\partial y}N_{j} + \delta_{zz} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right)} , \hfill \\ \end{gathered}$$
(45)

Equations (42)–(46) can be written into matrix form

$${\mathbf{k}}^{e} {\mathbf{x}} = {\mathbf{b}}^{e} ,$$
(46)

In this expression, \({\mathbf{k}}^{e}\) is

$${\mathbf{k}}^{e} = \left( {\begin{array}{*{20}c} {{\mathbf{k}}^{11} } & {{\mathbf{k}}^{12} } & {{\mathbf{k}}^{13} } & {{\mathbf{k}}^{14} } \\ {{\mathbf{k}}^{21} } & {{\mathbf{k}}^{22} } & {{\mathbf{k}}^{23} } & {{\mathbf{k}}^{24} } \\ {{\mathbf{k}}^{31} } & {{\mathbf{k}}^{32} } & {{\mathbf{k}}^{33} } & {{\mathbf{k}}^{34} } \\ {{\mathbf{k}}^{41} } & {{\mathbf{k}}^{42} } & {{\mathbf{k}}^{43} } & {{\mathbf{k}}^{44} } \\ \end{array} } \right),$$
(47)

where component \({\mathbf{k}}^{ij} \in {\mathbb{C}}^{8 \times 8}\) and

$$\left( {{\mathbf{k}}^{11} } \right)_{ij} = \int_{e} {\left( { - \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} - \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial y} - \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + i\omega \mu_{0} \sigma_{xx} N_{i} N_{j} } \right)} {\text{d}}v,$$
(48)
$$\left( {{\mathbf{k}}^{12} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \sigma_{xy} \int_{e} {N_{i} N_{j} } {\text{d}}v,$$
(49)
$$\left( {{\mathbf{k}}^{13} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \sigma_{xz} \int_{e} {N_{i} N_{j} } {\text{d}}v,$$
(50)
$$\left( {{\mathbf{k}}^{14} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{xx} N_{i} \frac{{\partial N_{j} }}{\partial x} + \sigma_{xy} N_{i} \frac{{\partial N_{j} }}{\partial y} + \sigma_{xz} N_{i} \frac{{\partial N_{j} }}{\partial z}} \right)} {\text{d}}v,$$
(51)
$$\left( {{\mathbf{k}}^{21} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \sigma_{yx} \int_{e} {N_{i} N_{j} } {\text{d}}v,$$
(52)
$$\left( {{\mathbf{k}}^{22} } \right)_{ij} = \int_{e} {\left( { - \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} - \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial y} - \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + \sqrt { - 1} \omega \mu_{0} \sigma_{yy} N_{i} N_{j} } \right)} {\text{d}}v,$$
(53)
$$\left( {{\mathbf{k}}^{23} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \sigma_{yz} \int_{e} {N_{i} N_{j} } {\text{d}}v,$$
(54)
$$\left( {{\mathbf{k}}^{24} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{yx} N_{i} \frac{{\partial N_{j} }}{\partial x} + \sigma_{yy} N_{i} \frac{{\partial N_{j} }}{\partial y} + \sigma_{yz} N_{i} \frac{{\partial N_{j} }}{\partial z}} \right)} {\text{d}}v,$$
(55)
$$\left( {{\mathbf{k}}^{31} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \sigma_{zx} \int_{e} {N_{i} N_{j} } {\text{d}}v,$$
(56)
$$\left( {{\mathbf{k}}^{32} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \sigma_{zy} \int_{e} {N_{i} N_{j} } {\text{d}}v,$$
(57)
$$\left( {{\mathbf{k}}^{33} } \right)_{ij} = \int_{e} {\left( { - \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} - \frac{{\partial N_{i} }}{\partial y}\frac{{\partial N_{j} }}{\partial y} - \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + \sqrt { - 1} \omega \mu_{0} \sigma_{zz} N_{i} N_{j} } \right)} {\text{d}}v,$$
(58)
$$\left( {{\mathbf{k}}^{34} } \right)_{ij} = \int_{e} {\left( {\sigma_{zx} N_{i} \frac{{\partial N_{j} }}{\partial x} + \sigma_{zy} N_{i} \frac{{\partial N_{j} }}{\partial y} + \sigma_{zz} N_{i} \frac{{\partial N_{j} }}{\partial z}} \right)} {\text{d}}v,$$
(59)
$$\left( {{\mathbf{k}}^{41} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{xx} \frac{{\partial N_{i} }}{\partial x}N_{j} + \sigma_{yx} \frac{{\partial N_{i} }}{\partial y}N_{j} + \sigma_{zx} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right)} {\text{d}}v,$$
(60)
$$\left( {{\mathbf{k}}^{42} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{xx} \frac{{\partial N_{i} }}{\partial x}N_{j} + \sigma_{yx} \frac{{\partial N_{i} }}{\partial y}N_{j} + \sigma_{zx} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right){\text{d}}v} ,$$
(61)
$$\left( {{\mathbf{k}}^{43} } \right)_{ij} = \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{xz} \frac{{\partial N_{i} }}{\partial x}N_{j} + \sigma_{yz} \frac{{\partial N_{i} }}{\partial y}N_{j} + \sigma_{zz} \frac{{\partial N_{i} }}{\partial z}N_{j} } \right){\text{d}}v} ,$$
(62)
$$\begin{aligned} \left( {{\mathbf{k}}^{44} } \right)_{ij} = & \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{xx} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + \sigma_{xy} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial y} + \sigma_{xz} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial z}} \right)} {\text{d}}v \\ & \quad + \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{yx} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + \sigma_{yy} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial y} + \sigma_{yz} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial z}} \right)} {\text{d}}v \\ & \quad + \sqrt { - 1} \omega \mu_{0} \int_{e} {\left( {\sigma_{zx} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + \sigma_{zy} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial y} + \sigma_{zz} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial z}} \right){\text{d}}v,} \\ \end{aligned}$$
(63)

and

$${\mathbf{b}}^{e} = {\mathbf{sp}},$$
(64)

where

$${\mathbf{s}} = \left( {\begin{array}{*{20}c} {{\mathbf{s}}^{11} } & {{\mathbf{s}}^{12} } & {{\mathbf{s}}^{13} } \\ {{\mathbf{s}}^{21} } & {{\mathbf{s}}^{22} } & {{\mathbf{s}}^{23} } \\ {{\mathbf{s}}^{31} } & {{\mathbf{s}}^{32} } & {{\mathbf{s}}^{33} } \\ {{\mathbf{s}}^{41} } & {{\mathbf{s}}^{42} } & {{\mathbf{s}}^{43} } \\ \end{array} } \right),\;{\mathbf{p}} = \left( {\begin{array}{*{20}c} {{\mathbf{p}}^{1} } \\ {{\mathbf{p}}^{2} } \\ {{\mathbf{p}}^{3} } \\ \end{array} } \right).$$
(65)

In this expression, an arbitrary component of matrix S is an 8 × 8 complex matrix, and

$${\mathbf{p}}^{1} = \left( {E_{x1} ,E_{x2} , \ldots ,E_{x8} } \right)^{{\text{T}}} ,{\mathbf{p}}^{2} = \left( {E_{y1} ,E_{y2} , \ldots ,E_{y8} } \right)^{{\text{T}}} ,{\mathbf{p}}^{3} = \left( {E_{z1} ,E_{z2} , \ldots ,E_{z8} } \right)^{{\text{T}}} ,$$
(66)

where \(E_{xi}\), \(E_{yi}\), \(E_{zi}\) are the primary electric fields in x-, y-, and z-directions of node i. We have

$${\mathbf{s}}^{11} = - \mu \int_{e} {\delta_{xx} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(67)
$${\mathbf{s}}^{12} = - \mu \int_{e} {\delta_{xy} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(68)
$${\mathbf{s}}^{13} = - \mu \int_{e} {\delta_{xz} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(69)
$${\mathbf{s}}^{21} = - \mu \int_{e} {\delta_{yx} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(70)
$${\mathbf{s}}^{22} = - \mu \int_{e} {\delta_{yy} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(71)
$${\mathbf{s}}^{23} = - \mu \int_{e} {\delta_{yz} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(72)
$${\mathbf{s}}^{31} = - \mu \int_{e} {\delta_{zx} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(73)
$${\mathbf{s}}^{32} = - \mu \int_{e} {\delta_{zy} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(74)
$${\mathbf{s}}^{33} = - \mu \int_{e} {\delta_{zz} {\mathbf{NN}}^{{\text{T}}} {\text{d}}v,}$$
(75)
$${\mathbf{s}}^{41} = - \mu \int_{e} {\left( {\delta_{xx} \frac{{\partial {\mathbf{N}}}}{\partial x}{\mathbf{N}}^{{\text{T}}} + \delta_{yx} \frac{{\partial {\mathbf{N}}}}{\partial y}{\mathbf{N}}^{{\text{T}}} + \delta_{zx} \frac{{\partial {\mathbf{N}}}}{\partial z}{\mathbf{N}}^{{\text{T}}} } \right)} {\text{d}}v,$$
(76)
$${\mathbf{s}}^{42} = - \mu \int_{e} {\left( {\delta_{xy} \frac{{\partial {\mathbf{N}}}}{\partial x}{\mathbf{N}}^{{\text{T}}} + \delta_{yy} \frac{{\partial {\mathbf{N}}}}{\partial y}{\mathbf{N}}^{{\text{T}}} + \delta_{zy} \frac{{\partial {\mathbf{N}}}}{\partial z}{\mathbf{N}}^{{\text{T}}} } \right)} {\text{d}}v,$$
(77)
$${\mathbf{s}}^{43} = - \mu \int_{e} {\left( {\delta_{xz} \frac{{\partial {\mathbf{N}}}}{\partial x}{\mathbf{N}}^{{\text{T}}} + \delta_{yz} \frac{{\partial {\mathbf{N}}}}{\partial y}{\mathbf{N}}^{{\text{T}}} + \delta_{zz} \frac{{\partial {\mathbf{N}}}}{\partial z}{\mathbf{N}}^{{\text{T}}} } \right)} {\text{d}}v.$$
(78)

In Eqs. (67)–(78),\({\mathbf{N}} = \left( {N_{1} ,N_{2} , \ldots ,N_{8} } \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Hu, X. & Cai, H. Three-Dimensional Finite-Element Analysis of Magnetotelluric Data Using Coulomb-Gauged Potentials in General Anisotropic Media. Pure Appl. Geophys. 178, 4561–4581 (2021). https://doi.org/10.1007/s00024-021-02882-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02882-0

Keywords

Navigation