Skip to main content
Log in

Qp, Qs, Qc, Qi, and \(Q_{{s_{c} }}\) Attenuation Parameters in the Zagros Region, Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The attenuation of seismic waves in the Zagros region (southwestern Iran) was investigated using seismic waveforms collected from 2006 to 2019. The selected data set consists of 6421 local earthquakes (3 < ML < 5.5) recorded at a permanent network composed of 36 seismic stations. The quality factor of seismic body waves was estimated using the extended coda normalization method. Estimated values for Qp and Qs at five central frequencies (1.5, 3, 6, 12, 18 Hz) are \(Q_{p} (r \le 100\,{\text{km}}) = (57.3 \pm 3)f^{(0.71 \pm 0.11)}\) and \(Q_{s} (r \le 100\,{\text{km}}) = (72 \pm 4)f^{(0.8 \pm 0.06)}\), respectively. We used Wennerberg’s (Bull Seismol Soc Am 83: 279–290, 1993) method to separate intrinsic and scattering attenuation. This study suggests that the values of \(Q_{{s_{c} }}\) and Qi are close to coda attenuation, which may arise from the complex tectonic nature of the Zagros. The estimated results of coda wave attenuation show the same results as the intrinsic and scattering attenuation, which suggests that this is the main cause of the coda decay. According to our results, the attenuation of seismic waves in the Zagros area is significant due to geological features such as hidden faults, numerous fractures, a sedimentary layer, the Gachsaran Formation, and Hormuz salt. Spatial variation in Q values reveals that the attenuation is higher in the northern parts of the region than in the southern parts. The results of this study are compared to other seismically active areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Fattah, A. K., Badawy, A., & Kim, K. Y. (2007). Normal faulting mechanisms in the Western Desert of Egypt. Journal of Seismology, 11(1), 27–38.

    Google Scholar 

  • Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(3), 401–419.

    Google Scholar 

  • Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 74(2), 615–631.

    Google Scholar 

  • Aki, K. (1980). Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Physics of the Earth and Planetary Interiors, 21(1), 50–60.

    Google Scholar 

  • Aki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation, and scattering effects. Journal of Geophysical Research, 80(23), 3322–3342.

    Google Scholar 

  • Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics. https://doi.org/10.1029/2003TC001530

    Article  Google Scholar 

  • Amiri Fard, R., Javan Doloei, G., Rahimi, H., & Farrokhi, M. (2019). Attenuation of P and S waves in the Western part of Iran. Geophysical Journal International, 218(2), 1143–1156.

    Google Scholar 

  • Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5), 1969–1993.

    Google Scholar 

  • Berberian, F., Muir, I., Pankhurst, R., & Berberian, M. (1982). Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5), 605–614.

    Google Scholar 

  • Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds active basement tectonics and surface morphotectonics. Tectonophysics, 241(3–4), 193–224.

    Google Scholar 

  • Berberian, M., & King, G. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2), 210–265.

    Google Scholar 

  • Besse, J., Torcq, F., Gallet, Y., Ricou, L. E., Krystyn, L., & Saidi, A. (1998). Late Permian to Late Triassic palaeomagnetic data from Iran: Constraints on the migration of the Iranian block through the Tethyan Ocean and initial destruction of Pangaea. Geophysical Journal International., 135, 77–92.

    Google Scholar 

  • Bianco, F., Castellano, M., Del Pezzo, E., & Ibanez, J. (1999). Attenuation of short-period seismic waves at Mt Vesuvius, Italy. Geophysical Journal International, 138(1), 67–76.

    Google Scholar 

  • Bora, N., & Biswas, R. (2017). Quantifying regional body wave attenuation in a seismic prone zone of northeast India. Pure and Applied Geophysics, 174(5), 1953–1963.

    Google Scholar 

  • Campillo, M., & Plantet, J. L. (1991). Frequency dependence and spatial distribution of seismic attenuation in France: Experimental results and possible interpretations. Physics of the Earth and Planetary Interiors, 67(1–2), 48–64.

    Google Scholar 

  • Canas, J. A., Ugalde, A., Pujades, L. G., Carracedo, J. C., Soler, V., & Blanco, M. J. (1998). Intrinsic and scattering seismic wave attenuation in the Canary Islands. Journal of Geophysical Research, 103(B7), 15037–15050.

    Google Scholar 

  • Chung, T.-W., & Sato, H. (2001). Attenuation of high-frequency P and S waves in the crust of southeastern South Korea. Bulletin of the Seismological Society of America, 91(6), 1867–1874.

    Google Scholar 

  • de Lorenzo, S. (1998). A model to study the bias on Q estimates obtained by applying the rise time method to earthquake data. In Q of the Earth: Global, Regional, and Laboratory Studies (pp. 419–438). Birkhäuser: Basel.

  • De Lorenzo, S., Del Pezzo, E., & Bianco, F. (2013). Qc, Qβ, Qi, and Qs attenuation parameters in the Umbria–Marche (Italy) region. Physics of the Earth and Planetary Interiors, 218, 19–30.

    Google Scholar 

  • Dercourt, J. (1986). Geological evolution of the Atlantic to the Pamirs since the Lias. Tectonophysics, 123, 241–315.

    Google Scholar 

  • Farrokhi, M., & Hamzehloo, H. (2017). Body wave attenuation characteristics in the crust of Alborz region and North Central Iran. Journal of Seismology, 21(4), 631–646.

    Google Scholar 

  • Farrokhi, M., Hamzehloo, H., Rahimi, H., & Zadeh, M. A. (2016). Separation of intrinsic and scattering attenuation in the crust of central and eastern Alborz region, Iran. Physics of the Earth and Planetary Interiors, 253, 88–96.

    Google Scholar 

  • Fehler, M., Hoshiba, M., Sato, H., & Obara, K. (1992). Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance. Geophysical Journal International, 108, 787–800.

    Google Scholar 

  • Frankel, A., & Wennerberg, L. (1987). Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation. Bulletin of the Seismological Society of America77(4), 1223–1251.

    Google Scholar 

  • Golonka, J. (2004). Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics381(1-4), 235–273.

    Google Scholar 

  • Hatzfeld, D., Tatar, M., Priestley, K., & Ghafory-Ashtiany, M. (2003). Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophysical Journal International, 155(2), 403–410.

    Google Scholar 

  • Havskov, J., Sørensen, M. B., Vales, D., Özyazıcıoğlu, M., Sánchez, G., & Li, B. (2016). Coda Q in different tectonic areas, the influence of processing parameters. Bulletin of the Seismological Society of America, 106(3), 956–970.

    Google Scholar 

  • Hazarika, D., Kumar, N., & Yadav, D. K. (2013). Crustal thickness and Poisson’s ratio variations across the northwest Himalaya and Eastern Ladakh. Acta Geophysica, 61(4), 905–922.

    Google Scholar 

  • Heidari, R., & Mirzaei, N. (2017). Region-specific S-wave attenuation for earthquakes in northwestern Iran. Journal of Seismology, 21(6), 1335–1344.

    Google Scholar 

  • Herrmann, R. B. (1980). Q estimates using the coda of local earthquake. Bulletin of the Seismological Society of America70(2), 447–468.

    Google Scholar 

  • Herrmann, R. B., & Kijko, A. (1983). Modeling some empirical vertical component Lg relations Qs. Bulletin of the Seismological Society of America, 73(1), 157–171.

    Google Scholar 

  • Hough, S. E., & Anderson, J. G. (1988). High-frequency spectra observed at Anza, California: Implications for Q structure. Bulletin of the Seismological Society of America78(2), 692–707.

    Google Scholar 

  • Irandoust, M. A., Sobouti, F., & Rahimi, H. (2016). Lateral and depth variations of coda Q in the Zagros region of Iran. Journal of Seismology, 20(1), 197–211.

    Google Scholar 

  • Jackson, D. D., & Anderson, D. L. (1974). Physical mechanism of seismic-waves attenuation. Review of Geophysics and Space and Space Physics, 8, 1–63.

    Google Scholar 

  • James, G. A., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG Bulletin49(12), 2182–2245.

    Google Scholar 

  • Kaviani, A., Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H., & Mokhtari, M. (2007). A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran). Geophysical Journal International, 171(1), 399–410.

    Google Scholar 

  • Kim, K. D., Chung, T. W., & Kyung, J. B. (2004). Attenuation of high-frequency P and S waves in the crust of Choongchung provinces, central South Korea Qs. Bulletin of the Seismological Society of America, 94(3), 1070–1078.

    Google Scholar 

  • Knopoff, L. (1964). Department of physics and institute of geophysics and planetary physics University of California, Los Angeles. Reviews of Geophysics, 2(4), 625–660.

    Google Scholar 

  • Kumar, R., Gupta, S. C., Singh, S. P., & Kumar, A. (2016). The attenuation of high-frequency seismic waves in the lower Siang Region of Arunachal Himalaya: Qα, Qβ, Qc, Qi, and Qs. Bulletin of the Seismological Society of America, 106(4), 1407–1422.

    Google Scholar 

  • Kvamme, L., & Havskov, J. (1989). Q in southern Norway Qs. Bulletin of the Seismological Society of America, 79(5), 1575–1588.

    Google Scholar 

  • Lay, T., & Wallace, T. C. (1995). Modern global seismology. Academic Press.

    Google Scholar 

  • Mahood, M., Hamzehloo, H., & Doloei, G. (2009). Attenuation of high-frequency P and S waves in the crust of the East-Central Iran. Geophysical Journal International, 179(3), 1669–1678.

    Google Scholar 

  • Masuda, T. (1988). Corner frequencies and Q values of P and S waves by simultaneous inversion technique. Tohoku Geophysical Journal, 31(3–4), 101–125.

    Google Scholar 

  • Mitchell, B. J. (1995). Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Reviews of Geophysics, 33(4), 441–462.

    Google Scholar 

  • Motaghi, K., Shabanian, E., Tatar, M., Cuffaro, M., & Doglioni, C. (2017). The south Zagros suture zone in teleseismic images. Tectonophysics, 694, 292–301.

    Google Scholar 

  • Mukhopadhyay, S., & Tyagi, C. (2008). Variation of intrinsic and scattering attenuation with depth in NW Himalayas. Geophysical Journal International, 172(3), 1055–1065.

    Google Scholar 

  • Naghavi, M., Rahimi, H., Moradi, A., & Mukhopadhyay, S. (2017). Spatial variations of seismic attenuation in the North West of Iranian plateau from analysis of coda waves. Tectonophysics, 708, 70–80.

    Google Scholar 

  • Naserieh, S., Karkooti, E., Dezvareh, M., & Rahmati, M. (2019). Analysis of artifacts and systematic errors of the Iranian Seismological Center’s earthquake catalog. Journal of Seismology, 23(4), 665–682.

    Google Scholar 

  • Nissen, E., Yamini-Fard, F., Tatar, M., Gholamzadeh, A., Bergman, E., Elliott, J. R., et al. (2010). The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran. Earth and Planetary Science Letters296(3-4), 181–194.

    Google Scholar 

  • Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J., & Mokhtari, M. (2006). Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran). Geophysical Journal International, 166(1), 227–237.

    Google Scholar 

  • Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., & Péquegnat, C. (2010). Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geological Society, London, Special Publications330(1), 5–18.

    Google Scholar 

  • Pulli, J. J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America, 74(4), 1149–1166.

    Google Scholar 

  • Rahimi, H., Hamzehloo, H., & Kamalian, N. (2010). Estimation of coda and shear wave attenuation in the volcanic area in SE Sabalan Mountain NW Iran. Acta Geophysica, 58(2), 244–268.

    Google Scholar 

  • Sato, H. (1977). Energy propagation including scattering effects singles isotropic scattering approximation. Journal of Physics of the Earth25(1), 27–41.

    Google Scholar 

  • Sato, H., & Matsumura, S. (1980). Three-dimensional analysis of scattered P waves based on the PP single isotropic scattering model. Journal of Physics of the Earth, 28(5), 521–530.

    Google Scholar 

  • Scherbaum, F., & Sato, H. (1991). Inversion of full seismogram envelopes based on the parabolic approximation: Estimation of randomness and attenuation in southeast Honshu, Japan. Journal of Geophysical Research, 96(B2), 2223–2232.

    Google Scholar 

  • Shad Manaman, N., Shomali, H., & Koyi, H. (2011). New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion. Geophysical Journal International, 184(1), 247–267.

    Google Scholar 

  • Shoja-Taheri, J., & Farrokh, M. (2009). Attenuation of high-frequency P and S waves in Khorasan Province in Iran. Proceedings of the SSA2009 Meeting, 80(2), 346.

    Google Scholar 

  • Singh, S., Singh, C., Biswas, R., Mukhopadhyay, S., & Sahu, H. (2016). Attenuation characteristics in eastern Himalaya and southern Tibetan Plateau: An understanding of the physical state of the medium. Physics of the Earth and Planetary Interiors257, 48–56.

    Google Scholar 

  • Singh, C., Biswas, R., Jaiswal, N., & Ravi Kumar, M. (2019). Spatial variations of coda wave attenuation in Andaman–Nicobar subduction zone. Geophysical Journal International, 217(3), 1515–1523.

    Google Scholar 

  • Sivaram, K., Utpal, S., Kanna, N., & Kumar, D. (2017). Attenuation characteristics of high-frequency seismic waves in southern India. Pure and Applied Geophysics, 174(7), 2523–2545.

    Google Scholar 

  • Snyder, D. B., & Barazangi, M. (1986). Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics, 5(3), 361–373.

    Google Scholar 

  • Stocklin, J. (1974). Possible ancient continental margins in Iran (pp. 873–887). Springer.

    Google Scholar 

  • Talebi, A., Koulakov, I., Moradi, A., Rahimi, H., & Gerya, T. (2020). Ongoing formation of felsic lower crustal channel by relamination in Zagros collision zone revealed from regional tomography. Scientific Reports, 10(1), 1–7.

    Google Scholar 

  • Tatar, M., Hatzfeld, D., & Ghafory-Ashtiany, M. (2004). Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophysical Journal International, 156(2), 255–266.

    Google Scholar 

  • Toksoz, M., Johnston, D. H., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: I. Laboratory Measurements. Geophysics, 44(4), 681–690.

    Google Scholar 

  • Vargas, C. A., Ugalde, A., Pujades, L. G., & Canas, J. A. (2004). Spatial variation of coda wave attenuation in northwestern Colombia. Geophysical Journal International, 158(2), 609–624.

    Google Scholar 

  • Wennerberg, L. (1993). Multiple-scattering interpretations of coda-Q measurements. Bulletin of the Seismological Society of America, 83, 279–290.

    Google Scholar 

  • Winkler, K. W., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional-sliding. Geophysics, 47(1), 1–15.

    Google Scholar 

  • Yaminifard, F., Sedghi, M. H., Gholamzadeh, A., Tatar, M., & Hessami, K. (2012). Active faulting of the southeastern-most Zagros (Iran): Microearthquake seismicity and crustal structure. Journal of Geodynamics, 55, 56–65.

    Google Scholar 

  • Yoshimoto, K., Sato, H., Iio, Y., Ito, H., Ohminato, T., & Ohtake, M. (1998). Frequency dependent attenuation of high-frequency P and S Waves in the upper crust in Western Nagano, Japan, Q of the earth: global, regional, and laboratory studies (pp. 489–502). Springer.

    Google Scholar 

  • Yoshimoto, K., Sato, H., & Ohtake, M. (1993). Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda normalization method. Geophysical Journal International, 114(1), 165–174.

    Google Scholar 

  • Zucca, J. J., Hutchings, L. J., & Kasameyer, P. W. (1994). Seismic velocity and attenuation structure of the Geysers geothermal field California. Geothermics, 23(2), 111–126.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Iranian Seismological Center (IRSC) and the International Institute of Earthquake Engineering and Seismology (IIEES) for providing the required waveforms for this study. The authors would like to acknowledge the financial support of University of Tehran for this research under grant number 28950/1/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, A., Rahimi, H., Moradi, A. et al. Qp, Qs, Qc, Qi, and \(Q_{{s_{c} }}\) Attenuation Parameters in the Zagros Region, Iran. Pure Appl. Geophys. 178, 4487–4505 (2021). https://doi.org/10.1007/s00024-021-02879-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02879-9

Keywords

Navigation