Skip to main content
Log in

Probabilistic Seismic Hazard and Deaggregation Analysis of Guilan Region, South of Caspian Sea, Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper presents a probabilistic seismic hazard assessment (PSHA) for Guilan Province, an influential, highly populated and strategic district to the south of the Caspian Sea in northern Iran. In this study, the peak ground acceleration (PGA) and spectral acceleration (SA) over bedrock are estimated for the whole area of the province. NGA-West2 and the EMME project attenuation relationships are applied and combined using the logic tree method. Seismic hazard assessment is then carried out to establish the maps of seismic hazard distribution based on PGA values for two hazard levels as suggested by the Iranian seismic code of practice. Finally, deaggregation analysis is performed to determine the magnitude and distance pair that most prominently contributes to the seismic hazard for each district, which is of great importance for the region, as this has not been done before. Comparing the results with those suggested by the Iranian seismic code of practice and those obtained by previous studies, a general agreement seems to exist, although some violations are observed for some areas, especially in the southeastern part of the province, highlighting a need for revision of the Iranian seismic code of practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdollahzadeh, G., Sazjini, M., Shahaky, M., Tajrishi, F. Z., & Khanmohammadi, L. (2014). Considering potential seismic sources in earthquake hazard assessment for Northern Iran. Journal of Seismology, 18(3), 357–369.

    Article  Google Scholar 

  • Abrahamson, N., & Silva, W. (2008). Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra, 24(1), 67–97.

    Article  Google Scholar 

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055.

    Article  Google Scholar 

  • AEC Alaska Earthquake Center, University of Alaska. https://earthquake.alaska.edu/. Accessed June 2021.

  • Al-shijbi, Y., El-Hussain, I., Deif, A., Al-Kalbani, A., & Mohamed, A. M. (2019). Probabilistic seismic hazard assessment for the Arabian peninsula. Pure and Applied Geophysics, 176(4), 1503–1530.

    Article  Google Scholar 

  • Ambraseys, N., & Melville, C. (1982). A history of Persian earthquakes. Cambridge Univ. Press.

    Google Scholar 

  • Amiri, G. G., & Amrei, S. R. Seismic hazard assessment of Gilan Province including Manjil in Iran. In Proc. 14th World Conf. Earthquake Eng, 2008

  • Atkinson, G. M., & Morrison, M. (2009). Observations on regional variability in ground-motion amplitudes for small-to-moderate earthquakes in North America. Bulletin of the Seismological Society of America, 99(4), 2393–2409.

    Article  Google Scholar 

  • Babayev, G., Telesca, L., Agayeva, S., Ismail-zade, T., Muradi, I., Aliyev, Y., et al. (2020). Seismic hazard analysis for southern slope of the Greater Caucasus (Azerbaijan). Pure and Applied Geophysics, 1–14.

  • Baker, J. W. (2008). An introduction to probabilistic seismic hazard analysis. Report for the US Nuclear Regulatory Commission, page Version, 1.

  • Berberian, M. (1973). Preliminary map of epicenters and focal depth. Geological Survey of Iran, Iran.

  • Berberian, M. (1976). Contribution to the seismotectonics of Iran (part II-III): In commemoration of the 50th anniversary of the Pahlavi dynasty (Vol. 39): Ministry of Industry and Mines, Geological Survey of Iran, Tectonic and Seismotectonic Section.

  • BHRC (2014). Iranian code of practice for seismic resistant design of buildings, Standard No. 2800, Building and Housing Research Center. 4th Edition.

  • Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24(1), 99–138.

  • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139–171.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1115.

    Article  Google Scholar 

  • Chiou, B.-J., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24(1), 173–215.

    Article  Google Scholar 

  • Chiou, B.S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153.

    Article  Google Scholar 

  • Das, R., Sharma, M., & Wason, H. (2016). Probabilistic seismic hazard assessment for northeast India region. Pure and Applied Geophysics, 173(8), 2653–2670.

    Article  Google Scholar 

  • Davis, S. D., & Frohlich, C. (1991). Single-link cluster analysis, synthetic earthquake catalogues, and aftershock identification. Geophysical Journal International, 104(2), 289–306.

    Article  Google Scholar 

  • Davoudi, N., Tavakoli, H. R., Zare, M., & Jalilian, A. (2018). Declustering of Iran earthquake catalog (1983–2017) using the epidemic-type aftershock sequence (ETAS) model. Acta Geophysica, 66(6), 1359–1373.

    Article  Google Scholar 

  • Frohlich, C., & Davis, S. D. (1990). Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogues. Geophysical Journal International, 100(1), 19–32.

    Article  Google Scholar 

  • Gardner, J., & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian. Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Article  Google Scholar 

  • Ghodrati Amiri, G., Motamed, R., Hashemi, R., & Nouri, H. (2006). Evaluating the seismicity parameters of Tehran Iran. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(4), 275–283.

    Article  Google Scholar 

  • Ghorbani, A., & Izadi, A. (2017). Comprehensive earthquake catalogs and seismicity parameters from incomplete earthquake catalogs of Guilan Region Iran. Civil Engineering Journal, 3(4), 237–266.

    Article  Google Scholar 

  • Giardini, D., Danciu, L., Erdik, M., Şeşetyan, K., Tümsa, M. B. D., Akkar, S., et al. (2018). Seismic hazard map of the Middle East. Bulletin of Earthquake Engineering, 16(8), 3567–3570.

    Article  Google Scholar 

  • Green, R. A., & Hall, W. J. (1994). An overview of selected seismic hazard analysis methodologies. University of Illinois Engineering Experiment Station. College of Engineering.

    Google Scholar 

  • Gruenthal, G. (1985). State of knowledge about the earthquake activity in the Vogtland/NW-Bohemia region prior to the earthquake swarm in 1985/86. Monitoring and Analysis of the Earthquake Swarm, 86.

  • GSI (2020). Geological Survey and Mineral Exploration of Iran. http://gsi.ir/.

  • Hessami, K., Jamali, F., & Tabassi, H. (2003). Map of major active faults of Iran. Tehran, IR, Iran: Ministry of Science, Research and Technology, International Institute of Earthquake Engineering and Seismology (IIEES).

  • Hessami, K., & Jamali, F. (2006). Explanatory notes to the map of major active faults of Iran. Journal of Seismology and Earthquake Engineering, 8(1), 1.

    Google Scholar 

  • Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A., Bolourchi, M. J., et al. (2010). Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia-Eurasia convergence in NE Iran since the Oligocene. Geophysical Journal International, 181(3), 1214–1246.

    Google Scholar 

  • Idriss, I. (2014). An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 30(3), 1155–1177.

    Article  Google Scholar 

  • IIEES (2020). International Institute of Earthquake Engineering and Seismology of Iran. http://www.iiees.ac.ir/en/.

  • IRCOLD (1994). Relationship between Ms and mb, Iranian Committee on Large Dams, Report (in Persian). Tehran, Iran.

  • ISC (2020). International Seismological Centre. http://www.irsc.ut.ac.ir.

  • IVPOSPM (2014). Iran Vice President Office of Strategic Planning and Monitoring.  No. 626. 

    Google Scholar 

  • Jackson, J., Haines, J., & Holt, W. (1995). The accommodation of Arabia-Eurasia plate convergence in Iran. Journal of Geophysical Research: Solid Earth, 100(B8), 15205–15219.

    Article  Google Scholar 

  • Jones, L. M. (1985). Foreshocks and time-dependent earthquake hazard assessment in Southern California. Bulletin of the Seismological Society of America, 75(6), 1669–1679.

    Google Scholar 

  • Kale, Ö., Akkar, S., Ansari, A., & Hamzehloo, H. (2015). A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV, and 5% damped response spectrum: Investigation of possible regional effects. Bulletin of the Seismological Society of America, 105(2A), 963–980.

    Article  Google Scholar 

  • Khoshnevis, N., Taborda, R., Azizzadeh-Roodpish, S., & Cramer, C. H. (2017). Seismic hazard estimation of northern Iran using smoothed seismicity. Journal of Seismology, 21(4), 941–964.

    Article  Google Scholar 

  • Kijko, A., & Sellevoll, M. A. (1989). Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bulletin of the Seismological Society of America, 79(3), 645–654.

    Article  Google Scholar 

  • Kijko, A., & Sellevoll, M. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82(1), 120–134.

    Google Scholar 

  • Kowsari, M., Ghazi, H., Kijko, A., Javadi, H. R., & Shabani, E. (2021). Estimating the maximum earthquake magnitude in the Iranian Plateau. Journal of Seismology, 25(3), 845–862.

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical Earthquake Engineering: Pearson Education India.

  • Mousavi-Bafrouei, S. H., Mirzaei, N., & Shabani, E. (2015). A declustered earthquake catalog for the Iranian Plateau. Annals of Geophysics, 57(6).

  • Nabavi, S. (1978). Historical earthquakes in Iran", 300BC-1900 AD. Journal of Earth and Space Physics, 7(1), 70–117.

    Google Scholar 

  • Nabilah, A., & Balendra, T. (2012). Seismic hazard analysis for Kuala Lumpur, Malaysia. Journal of Earthquake Engineering, 16(7), 1076–1094.

    Article  Google Scholar 

  • NGDI (2016). National Geosciences Database of Iran. http://www.ngdir.ir.

  • NGSI (2016). National Geological Survey of Iran. http://www.gsi.ir.

  • Nowroozi, A. A. (1976). Seismotectonic provinces of Iran. Bulletin of the Seismological Society of America, 66(4), 1249–1276.

    Google Scholar 

  • NSCI (2016). National Seismological Center of Iran, Geophysics Institute of Tehran University. http://www.irsc.ut.ir/.

  • Nuttli, O. W. (1973). Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research, 78(5), 876–885.

    Article  Google Scholar 

  • Papoulia, J., Fahjan, Y., Hutchings, L., & Novikova, T. (2015). PSHA for broad-band strong ground-motion hazards in the Saronikos Gulf, Greece, from potential earthquake with synthetic ground motions. Journal of Earthquake Engineering, 19(4), 624–648.

    Article  Google Scholar 

  • Pappin, J., Jiang, H., Koo, R., Yu, Y., Kwan, J., So, M., et al. (2015). An updated seismic hazard analysis of the Hong Kong region. HKIE Transactions, 22(3), 153–178.

    Article  Google Scholar 

  • Petersen, M. D., Bryant, W. A., Cramer, C. H., Cao, T., Reichle, M. S., Frankel, A. D., et al. (1996). Probabilistic seismic hazard assessment for the state of California. California Dept. of Conservation Division of Mines and Geology.

  • Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479–5495.

    Article  Google Scholar 

  • Savage, W. U. (1972). Microearthquake clustering near Fairview Peak, Nevada, and in the Nevada seismic zone. Journal of Geophysical Research, 77(35), 7049–7056.

    Article  Google Scholar 

  • Singh, S., Rodriguez, M., & Esteva, L. (1983). Statistics of small earthquakes and frequency of occurrence of large earthquakes along the Mexican subduction zone. Bulletin of the Seismological Society of America, 73(6A), 1779–1796.

    Google Scholar 

  • Stafford, P. J., Strasser, F. O., & Bommer, J. J. (2008). An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region. Bulletin of Earthquake Engineering, 6(2), 149–177.

    Article  Google Scholar 

  • Stirling, M. W., Wesnousky, S. G., & Berryman, K. R. (1998). Probabilistic seismic hazard analysis of New Zealand. New Zealand Journal of Geology and Geophysics, 41(4), 355–375.

    Article  Google Scholar 

  • Stoecklin, J. (1968). Structural history and tectonics of Iran: A review. Assoc Petrol. Geol Bulletin, 52(7), 1229–1258.

    Google Scholar 

  • Tatar, M., Jackson, J., Hatzfeld, D., & Bergman, E. (2007). The 2004 May 28 Baladeh earthquake (M w 6.2) in the Alborz, Iran: Overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophysical Journal International, 170(1), 249–261.

    Article  Google Scholar 

  • Tavakoli, B. (1994). The basics of seismic hazard analysis. International Institute of Earthquake Engineering and Seismology, Tehran, Iran.

  • Tavakoli, B. (1996). Major Seismotectonic Provinces of Iran, International Institute of Earthquake Engineering and Seismology. Internal Document.

  • Toksöz, M. N., Arpat, E., Şaro, & Glu, F. (1977). East Anatolian earthquake of 24 November 1976.

  • Tuluka, G. M., Lukindula, J., & Durrheim, R. J. (2020). Seismic Hazard Assessment of the Democratic Republic of Congo and Environs Based on the GEM–SSA Catalogue and a New Seismic Source Model. Pure and Applied Geophysics, 177(1), 195–214.

    Article  Google Scholar 

  • Uhrhammer, R. (1986). Characteristics of northern and central California seismicity. Earthquake Notes, 57(1), 21.

    Google Scholar 

  • USGS United States Geological Survey. https://earthquake.usgs.gov/. Accessed June 2021.

  • Vacareanu, R., Aldea, A., Lungu, D., Pavel, F., Neagu, C., Arion, C., et al. (2016). Probabilistic seismic hazard assessment for Romania. In Earthquakes and Their Impact on Society (pp. 137–169): Springer.

  • Westaway, R. (1990). Seismicity and tectonic deformation rate in Soviet Armenia: Implications for local earthquake hazard and evolution of adjacent regions. Tectonics, 9(3), 477–503.

    Article  Google Scholar 

  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382.

    Article  Google Scholar 

  • Wyss, M., Wiemer, S., & Zuniga, R. (2001). ZMAP-A tool for analyses of seismicity patterns. ZMAP cook book, ETH, Zurich.

  • Zafarani, H., & Farhadi, A. (2017). Testing ground-motion prediction equations against small-to-moderate magnitude data in Iran. Bulletin of the Seismological Society of America, 107(2), 912–933.

    Article  Google Scholar 

  • Zafarani, H., Rahpeyma, S., & Mousavi, M. (2017). Regional adjustment factors for three NGA-West2 ground-motion prediction equations to be applicable in northern Iran. Journal of Seismology, 21(3), 473–493.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Caspian Sea Basin Research Center (CSBR) of University of Guilan, Rasht, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghorbani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, A., Eslami, A. Probabilistic Seismic Hazard and Deaggregation Analysis of Guilan Region, South of Caspian Sea, Iran. Pure Appl. Geophys. 178, 3793–3816 (2021). https://doi.org/10.1007/s00024-021-02873-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02873-1

Keywords

Navigation