Skip to main content
Log in

Geophysical and Structural Survey in the Diagnosis of Leaks at a Fuel Station in a Uranium Mine in Decommissioning Phase (Poços de Caldas, Brazil)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Mining enterprises are, in essence, landscape modifiers and sources of long-term environmental degradation. The development of activities within the mines requires a complex logistical system for better functioning. It is common to have gas stations in the vicinity of mining areas as a support for supplying vehicles and machines. Inadequate operation and the absence of monitoring, as well as a planned closure of the activities of these stations, may impose risks of contamination of the geological environment. This work presents the efficiency of using electrical resistivity tomography (ERT) to map aged hydrocarbon in the subsurface in a former gas station area in a uranium mine. The presence and flow of hydrocarbons in the geological environment are also investigated through structural analysis of the area integrated with the geophysical results. The ERT results show a clear connection between the low-resistivity anomalies contained in the subsoil and the presence of the rock mass. Of particular interest, the ERT results made it possible to model the fractures contained in the subsoil and that condition a certain flow orientation between porous and fractured systems. The integrated analysis of geophysical and structural surveys proved to be essential in cases of fractured aquifer contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable; Brazilian Nuclear Industries (Indústrias Nucleares do Brasil—INB) provided access to the study area.

Code Availability

Not applicable.

References

  • Aalst, W. V. D. (2016). Mining process: data science in action (p. 477). Springer.

    Book  Google Scholar 

  • Abdel Aal, G. Z., Atekwana, E. A., Slater, L. D., & Atekwana, E. A. (2004). Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophysical Research Letters, 31(12), L12505.

    Article  Google Scholar 

  • ABEM. (2012). Terrameter LS - instruction manual (p. 122).

  • Aizebeokhai, A. P., Olayinka, A. I., Singh, V. S., & Uhuegbu, C. C. (2011). Effectiveness of 3D geoelectrical resistivity imaging using parallel 2D profiles. International Journal of the Physical Sciences, 6, 5623–5647. https://www.jstor.org/stable/24079283

  • Almeida, F. F. M. (1986). Distribuição regional e relações tectônicas do magmatismo pós-paleozoico no Brasil. Revista Brasileira De Geociências, 16, 325–340.

    Google Scholar 

  • Atekwana, E. A., & Atekwana, E. A. (2010). Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surveys in Geophysics, 31(2), 247–283.

    Article  Google Scholar 

  • Atekwana, E. A., Sauck, W. A., & Werkema, D. D. (2000). Investigations of geoelectrical signatures at a hydrocarbon contaminated site. Journal of Applied Geophysics, 44(2–3), 167–180.

    Article  Google Scholar 

  • Bania, G., & Cwiklik, M. (2013). 2D electrical resistivity tomography interpretation ambiguity – example of field studies supported with analogue and numerical modelling. Geology, Geophysics and Environment, 39(4), 331–339. https://doi.org/10.7494/geol.2013.39.4.331

    Article  Google Scholar 

  • Benson, A. K., Payne, K. L., & Stubben, M. A. (1997). Mapping groundwater contamination using DC resistivity and VLF geophysical methods–a case study. Geophysics, 62(1), 80–86.

    Article  Google Scholar 

  • Blondel, A., Schmutz, M., Franceschi, M., Tichané, F., & Carles, M. (2014). Temporal evolution of the geoelectrical response on a hydrocarbon contaminated site. Journal of Applied Geophysics, 103, 161–171.

    Article  Google Scholar 

  • Casagrande, M. F. S., Moreira, C. A., Targa, D. A., & Alberti, H. L. C. (2018). Integration of geophysical methods in the study of acid drainage in uranium mining waste. Revista Brasileira De Geofísica, 36(4), 1–12. https://doi.org/10.22564/rbgf.v36i4.1968

    Article  Google Scholar 

  • Cassidy, D. P., Werkema, J. D. D., Sauck, W., Atekwana, E., Rossbach, S., & Duris, J. (2001). The effects of LNAPL biodegradation products on electrical conductivity measurements. Journal of Environmental and Engineering Geophysics, 6(1), 47–52.

    Article  Google Scholar 

  • Caterina, D., Flores-Orozco, A., & Nguyen, F. (2017). Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination. Journal of Contaminant Hydrogeology, 201, 19–29.

    Article  Google Scholar 

  • Chatterjee, K. K. (2007). Uses of metals and metallic minerals (p. 314). New Age International Publishers.

    Google Scholar 

  • Che-Alota, V., Atekwana, E. A., Atekwana, E. A., Sauck, W. A., & Dale Werkema, D. (2009). Temporal geophysical signatures from contaminant-mass remediation. Geophysics, 74(4), B113–B123.

    Article  Google Scholar 

  • Cipriani, M. (2002). Mitigação dos Impactos sociais e ambientais decorrentes do fechamento definitivo de minas de urânio (p. 334). Tese de doutorado. Instituto de Geociências, Universidade Estadual de Campinas, Campinas, SP.

  • Cortada, U., Martínez, J., Rey, J., Hidalgo, C., & Sandoval, S. (2017). Assessment of tailings pond seals using geophysical and hydrochemical techniques. Engineering Geology, 223, 59–70. https://doi.org/10.1016/j.enggeo.2017.04.024

    Article  Google Scholar 

  • Cortês, A. R. P., Moreira, C. A., Paes, R. A. S., & Veloso, D. I. K. (2019). Geophysical and metalogenetic modelling of the copper occurrence in Camaquã Sedimentary Basin, Brazilian Southern. Pure and Applied Geophysics, 176, 4955–4968. https://doi.org/10.1007/s00024-019-02190-8

    Article  Google Scholar 

  • Delgado-Rodríguez, O., Flores-Hernández, D., Amezcua-Allieri, M. A., Rosas-Molina, A., Marín-Córdova, S., & Shevnin, V. (2014). Joint interpretation of geoelectrical and volatile organic compounds data: a case study in a hydrocarbons contaminated urban site. Geofísica Internacional, 53(2), 183–198. https://doi.org/10.1016/S0016-7169(14)71499-0

    Article  Google Scholar 

  • Dentith, M., & Mudge, S. T. (2014). Geophysics for the mineral exploration geoscientist (pp. 1–438). Cambridge University Press.

    Book  Google Scholar 

  • Dhillon, B. S. (2008). Mining equipment reliability, maintainability, and safety (p. 209). Springer.

    Book  Google Scholar 

  • Fernandes, H. M., Franklin, M. R., Veiga, L. H. S., Freitas, P., & Gomiero, L. A. (1996). Management of uranium mill tailing: geochemical processes and radiological risk assessment. Journal of Environmental Radioactivity, 30(1), 69–95. https://www.sciencedirect.com/science/article/pii/0265931X95000326

  • Filho, C. A. C. (2014). Avaliação da qualidade das águas superficiais no entorno das instalações minero-industriais de urânio de Caldas, Minas Gerais (p. 363). Tese de Doutorado, Pós-Graduação em Ciência e Tecnologia das Radiações, Minerais e Materiais. Centro de desenvolvimento da tecnologia nuclear, Belo Horizonte, Minas Gerias.

  • Fraenkel, M. O., Santos, R. C., Loureiro, F. E. V. L., & Muniz, W. S. (1985). Jazida de urânio no Planalto de Poços de Caldas – Minas Gerais (pp. 89–103). Principais depósitos minerais do Brasil, vol. 1, Recursos Minerais Energéticos, MME, DNPM e CVRD, Brasília.

  • Franklin, M. R. (2007). Modelagem numérica do escoamento hidrológico e dos processos geoquímicos aplicados à previsão da drenagem ácida em uma pilha de estéril da mina de urânio de Poços de Caldas – MG (p. 358). Tese de doutorado em ciências em Engenharia Civil. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

  • GEOSOFT. (2014). Oasis Montaj how to guide. http://updates.geosoft.com/downloads/files/how-to-guides/Oasis_montaj_Gridding.pdf.

  • Govett, G. J. S. (2000). Handbook of exploration geochemistry (p. 549). Elsevier.

    Google Scholar 

  • Helene, L. P. I., Moreira, C. A., & Bovi, R. (2020). Identification of leachate infiltration and its flow pathway in landfill by means of electrical resistivity tomography (ERT). Environmental Monitoring and Assessment, 192, 249. https://doi.org/10.1007/s10661-020-8206-5

    Article  Google Scholar 

  • Hudson, T. L., Fox, F. D., & Plumlee, G. S. (1999). Metal, mining and the environment (p. 68). American Geological Institute, Alexandria.

  • Knödel, K., Lange, G., & Voift, H. J. (2007). Environmental geology – handbook of field methods and case studies (p. 1357). Springer.

    Google Scholar 

  • Lghoul, M., Kchikach, A., Hakkou, R., Zouhri, L., Guerin, R., Bendjoudi, H., Teíxido, T., Penã, J. Á., Enriqué, L., Jaffal, M., & Hanich, L. (2012a). Etude géophysique et hydrogéologique du site minier abandonné de Kettara (région de Marrakech, Maroc): contribution au projet de rehabilitation. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2011.637495

    Article  Google Scholar 

  • Lghoul, M., Teixidó, T., Peña, J. A., Hakkou, R., Kchikach, A., Guérin, R., Jaffal, M., & Zouhri, L. (2012b). Electrical and seismic tomography used to image the structure of a tailings pond at the abandoned kettara mine, Morocco. Mine Water and the Environment, 31, 53–61. https://doi.org/10.1007/s10230-012-0172-x

    Article  Google Scholar 

  • Loke, M. H. A. (2010). Practical guide 2-D and 3-D surveys (p. 136). Electrical imaging surveys for environmental and engineering studies.

  • Loke, M. H., & Baker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by quasi-Newton method. Geophysical Prospecting, 44, 131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x

    Article  Google Scholar 

  • Maciel, A. C. (2007). Formação de geólogos no Brasil e sua influência na prospecção, pesquisa e descoberta de jazidas de urânio. In C. B. Gomes (Ed.), Geologia USP – 50 anos (p. 544). Editora USP.

    Google Scholar 

  • Martín-Crespo, T., Gómez-Ortiza, D., Martínez-Pagán, P., Ignacio-San José, C., Martín-Velázquez, S., Lillo, J., & Faz, A. (2012). Geoenvironmental characterization of riverbeds affected by mine tailings in the Mazarrón district (Spain). Journal of Geochemical Exploration, 119–120, 6–16. https://doi.org/10.1016/j.gexplo.2012.06.004

    Article  Google Scholar 

  • Martín-Crespo, T., Gómez-Ortiza, D., Martín-Velázquez, S., Martínez-Pagán, P., Ignacio, C., Lillo, J., & Faz, A. (2018). Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Engineering Geology, 232, 135–146. https://doi.org/10.1016/j.enggeo.2017.11.018

    Article  Google Scholar 

  • Martínez, J., Hidalgo, M. C., Rey, J., Garrido, J., Kohfahld, C., Benavente, J., & Rojas, D. (2016). A multidisciplinary characterization of a tailings pond in the Linares-La Carolina mining district, Spain. Journal of Geochemical Exploration, 162, 62–71. https://doi.org/10.1016/j.gexplo.2015.12.013

    Article  Google Scholar 

  • Martínez, J., Rey, J., Hidalgo, M. C., Garrido, J., & Rojas, D. (2014). Influence of measurement conditions on the resolution of electrical resistivity imaging: the example of abandoned mining dams in the La Carolina District (Southern Spain). International Journal of Mineral Processing, 133, 67–72. https://doi.org/10.1016/j.minpro.2014.09.008

    Article  Google Scholar 

  • Milson, J. (2003). Field geophysics (p. 232). Wiley.

    Google Scholar 

  • Moon, C. J., Whateley, M. K. G., & Evans, A. M. (2006). Introduction of mineral exploration (2nd ed., p. 499). Blackwell Publishing.

    Google Scholar 

  • Moreira, C. A., Casagrande, M. F. S., Büchi, F. M. S., & Targa, D. A. (2020). Hydrogelogical characterization of a waste rock pile and bedrock affected by acid mine drainage from geophysical survey. SN Applied Sciences, 2, 1236. https://doi.org/10.1007/s42452-020-3021-8

    Article  Google Scholar 

  • Moreira, C. A., Helene, L. P. I., & Côrtes, A. R. P. (2017). Integration of geoelectric and geochemical data in the evaluation of natural attenuation in a diesel contaminated site in São Manuel (Brazil). Geofísica Internacional, 56–3, 229–241.

    Google Scholar 

  • Moreira, C. A., Lapola, M. M., & Carrara, A. (2016). Comparative analyses among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofísica Internacional, 55(2), 119–129. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-71692016000200119

  • Mussett, A. E., & Khan, M. A. (2000). Looking into the earth: an introduction to geological geophysics (p. 470). Cambridge University Press.

    Book  Google Scholar 

  • Nascimento, M. R. L. (1998). Remoção e recuperação de urânio de águas ácidas de mina por resina de troca iônica (p. 93). Dissertação de mestrado em Química Analítica. Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP.

  • Peinado-Guevara, H., Green-Ruíz, C., Herrera-Barrientos, J., Escolero-Fuentes, O., Delgado-Rodríguez, O., Belmonte-Jiménez, S., & Guevara, M. L. (2012). Relationship between chloride concentration and electrical conductivity in groundwater and its estimation from vertical electrical soundings (VESs) in Guasave, Sinaloa. Mexico. Ciencia e Investigación Agraria, 39(1), 229–239. https://doi.org/10.4067/S0718-16202012000100020

    Article  Google Scholar 

  • Pérez-Corona, M., García, J. A., Taller, G., Polgár, D., Bustos, E., & Plank, Z. (2015). The cone penetration teste and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil. Physics and Chemistry of the Earth, 2015, 01–06. https://doi.org/10.1016/j.pce.2015.09.006

    Article  Google Scholar 

  • Rey, J., Martínez, J., Hidalgo, M. C., & Rojas, D. (2013). Heavy metal pollution in the Quaternary Garza basin: a multidisciplinary study of the environmental risks posed by mining (Linares, southern Spain). CATENA, 110, 234–242. https://doi.org/10.1016/j.catena.2013.06.023

    Article  Google Scholar 

  • Richards, J. P. (2009). Mining, society, and a sustainable world (p. 515). Springer.

    Google Scholar 

  • Rogers, S. W., Ong, S. K., Kjartanson, B. H., Golchin, J., & Stenback, G. A. (2002). Natural attenuation of polycyclic aromatic hydrocarbon contaminated sites: review. The Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 6(3), 141–155. https://doi.org/10.1061/(ASCE)1090-025X(2002)6:3(141)

    Article  Google Scholar 

  • Sauck, W. A., Atekwana, E. A., & Nash, M. S. (1998). High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. Journal of Environmental and Engineering Geophysics, 2–3, 203–212.

    Google Scholar 

  • Schorscher, H. D., & Shea, M. E. (1992). The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites. Journal of Geochemical Exploration, 45, 25–51. https://doi.org/10.1016/0375-6742(92)90121-N

    Article  Google Scholar 

  • Souza, A. M., Silveira, C. S., & Pereira, R. M. (2013). Contribuições dos metais provenientes das pilhas de rejeito da Mina Osamu Utsumi a drenagens do Complexo Alcalino de Poços de Caldas, Minas Gerais. Geochimica Brasiliensis, 27(1), 63–76.

    Article  Google Scholar 

  • Targa, D. A., Moreira, C. A., Camarero, P. L., Casagrande, M. F. C., & Alberti, H. L. C. (2019). Structural analysis and geophysical survey for hydrogeological diagnosis in uranium mine, Poços de Caldas (Brazil). SN Applied Sciences, 1, 299. https://doi.org/10.1007/s42452-019-0309-7

    Article  Google Scholar 

  • Ulbrich, H. H., & Ulbrich, M. N. C. (2000). The lujavrite and khibinite bodies of the Poços de Caldas Massif, southeastern Brazil: a structural and petrographical study. Revista Brasileira de Geociências, 30, 615–622. http://www.ppegeo.igc.usp.br/index.php/rbg/article/viewFile/10882/10342

  • Wilson, S. C., & Jones, K. C. (1993). Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environmental Pollution, 81(3), 229–249.

    Article  Google Scholar 

  • Yang, C. H., Yu, C. Y., & Su, S. W. (2007). High resistivities associated with a newly formed LNAPL plume imaged by geoelectric techniques - a case study. Journal of the Chinese Institute of Engineers, 30(1), 53–62.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the São Paulo Research Foundation (FAPESP) for the financial support through Process Number 2018/14565-3 (Regular Project), the Applied Geology Department of UNESP—Rio Claro for the availability of the geophysical equipment, and the Brazilian Nuclear Industries (Indústrias Nucleares do Brasil—INB) for providing access to the study area.

Funding

This research was funded by the São Paulo Research Foundation (FAPESP) through Process Number 2018/14565-3 (Regular Project) and by the Geology Department of UNESP—Rio Claro that made the geophysical equipment available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Augusto Moreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, C.A., Helene, L.P.I., Hartwig, M.E. et al. Geophysical and Structural Survey in the Diagnosis of Leaks at a Fuel Station in a Uranium Mine in Decommissioning Phase (Poços de Caldas, Brazil). Pure Appl. Geophys. 178, 3489–3504 (2021). https://doi.org/10.1007/s00024-021-02828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02828-6

Keywords

Navigation