Skip to main content
Log in

Crustal Structure and Seismogenic Background Beneath Zhumadian, Henan, China: Evidence from Magnetotelluric Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Earthquakes threaten people’s lives and property, especially when cities are affected. Thus, detecting the crustal structure and seismogenic background beneath cities is important if we are to lessen losses. Because the city of Zhumadian in Henan Province, China, is a well-developed area with a large population, more attention should be paid to earthquake detection. We therefore collected data from 15 magnetotelluric (MT) stations along a 55-km survey line across Zhumadian. Then, subsequent to acquisition, processing, and data inversion, we developed a preferred electrical resistivity model. We accurately relocated original earthquakes during the period between 1981 and 2019 within the study area using the double-difference earthquake location algorithm. The relocated earthquakes were projected onto our preferred MT model. The new resistivity model presented here reveals that saturated rocks, including rocks with porosities of 4.31–19.69% and moderate salinities of 10 g/L pore fluid and/or graphite, form conductive features in the upper crust. We also show that aqueous fluids derived from metamorphic dehydration within the lower crust and mantle, not melts, constitute mid-crustal conductors and facilitate detachment structures. The data show that the relocated earthquakes are located adjacent to the boundaries between conductive and resistive areas as well as at the bottom of fault fracture zones. These outcomes imply that the combination of rock failure and fault slipping triggers earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The seismic data used here were provided by the China Earthquake Data Center (http://data.earthquake.cn, accessed October 2019).

Code Availability

Rodi & Mackie, 2001; HypoDD software (Waldhauser & Ellsworth, 2000).

References

  • Adetunji, A. Q., Ferguson, I. J., & Jones, A. G. (2015). Reexamination of magnetotelluric responses and electrical anisotropy of the lithospheric mantle in the Grenville Province, Canada. Journal of Geophysical Research Solid Earth, 120, 1890–1908. https://doi.org/10.1002/2014JB011713

    Article  Google Scholar 

  • Ague, J. J., Park, J., & Rye, D. M. (1998). Regional metamorphic dehydration and seismic hazard. Geophysical Research Letters, 25(22), 4221–4224

    Article  Google Scholar 

  • Aysan, G., & Murat, B. (2007). Relation between electrical resistivity and earthquake generation in the crust of West Anatolia, Turkey. Tectonophysics, 445, 49–65. https://doi.org/10.1016/j.tecto.2007.06.009

    Article  Google Scholar 

  • Bedrosian, P. A., Unsworth, M. J., & Egbert, G. (2002). Magnetotelluric imaging of the creeping segment of the San Andreas Fault near Hollister. Geophysical Research Letters, 29(11), 1–1

    Article  Google Scholar 

  • Booker, J. R. (2014). The magnetotelluric phase tensor: A critical review. Surveys In Geophysics, 35, 7–40. https://doi.org/10.1007/s10712-013-9234-2

    Article  Google Scholar 

  • Brigham, E. O., & Morrow, R. E. (1967). The fast Fourier transform. IEEE Spectrum, 4(12), 63–70

    Article  Google Scholar 

  • Byerlee, J. D. (1993). Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology, 21(4), 303–306

    Article  Google Scholar 

  • Cagniard, L. (1953). Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18, 605–645

    Article  Google Scholar 

  • Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158(2), 457–469

    Article  Google Scholar 

  • Carpio, R. A., Romo, J. M., Frez, J., Gómez-Treviño, E., & Suárez-Vidal, F. (2011). Electrical resistivity imaging of a seismic region in northern Baja California, Mexico. Geofísica Internacional, 50(1), 23–39

    Google Scholar 

  • Castano, J. C., Zamarbide, J. L. (1992). A seismic risk reduction program for Mendoza City, Argentina. In Tenth World Conference on Earthquake Engineering, Madrid, Spain, International Association for Earthquake Engineering.

  • Chen, W. (2009). Carboniferous bauxite ore-forming system western Henan (in Chinese with English abstract). China University of Geosciences (Beijing).

  • Chave, A. D., & Thomson, D. J. (1989). Some comments on magnetotelluric response function estimation. Journal of Geophysical Research, 94, 14 215–14 225

  • Clemens, J. D., & Vielzeuf, D. (1987). Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86(2–4), 287–306

    Article  Google Scholar 

  • Crank, J. (1986). The mathematics of diffusion. (p. 414). Clarendon Press.

    Google Scholar 

  • Dong, Y., Yang, Z., Liu, X., Sun, S., Li, W., Cheng, B., & Zhang, G. (2016). Mesozoic intracontinental orogeny in the Qinling Mountains, central China. Gondwana Research, 30, 144–158

    Article  Google Scholar 

  • Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J., & Hauzenberger, C. (2011). Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3), 213–237

    Article  Google Scholar 

  • Duba, A. G., & Shankland, T. J. (1982). Free carbon and electrical conductivity in the Earth’s mantle. Geophysical Research Letters, 9(11), 1271–1274

    Article  Google Scholar 

  • Egbert, G. D. (1997). Robust multiple-station magnetotelluric data progressing. Geophysical Journal International, 130(2), 475–496

    Article  Google Scholar 

  • Etheridge, M. A., Wall, V. J., Cox, S. F., & Vernon, R. H. (1984). High fluid pressures during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms. Journal of Geophysical Research: Solid Earth, 89(B6), 4344–4358

    Article  Google Scholar 

  • Feucht, D. W., Bedrosian, P. A., & Sheehan, A. F. (2019). Lithospheric signature of late Cenozoic extension in electrical resistivity structure of the Rio Grande rift, New Mexico, USA. Journal of Geophysical Research: Solid Earth, 124(3), 2331–2351

    Article  Google Scholar 

  • Gamble, T. D., Guobau, W. M., & Clarke, J. (1979). Magnetotellurics with a remote magnetic reference. Geophysics, 44(1), 53–68

    Article  Google Scholar 

  • Gao, S., & Zhang, B. R. (1993). Radioactivity of rocks in the Qinling Orogenic Belt and adjacent areas and the current thermal structure and state of the lithosphere (in Chinese with English abstract). Geochimica (Beijing), 3, 241–251

    Google Scholar 

  • Gao, Z. W., Chen, Q. F., Huang, J. L., Qi, C., & Li, L. (2010). Velocity structure beneath the active faults in Beijing area and their seismo-tectonic characteristics. Technology for Earthquake Disaster Prevention, 5(3), 271–280

    Google Scholar 

  • Groom, R. W., & Bailey, R. C. (1989). Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research, 94, 1913–1925. https://doi.org/10.1029/JB094iB02p01913

    Article  Google Scholar 

  • Guo, X. J., & Jiao, G. H. (2002). Paleozoic petroleum geology of North China Block (in Chinese). Geological Publishing House.

    Google Scholar 

  • Gupta, H. K., Sarma, S. V. S., Harinarayana, T., & Virupakshi, G. (1996). Fluids below the hypocentral region of Latur earthquake, India: Geophysical indicators. Geophysical Research Letters, 23(13), 1569–1572

    Article  Google Scholar 

  • Gürer, A., & Bayrak, M. (2007). Relation between electrical resistivity and earthquake generation in the crust of West Anatolia, Turkey. Tectonophysics, 445(1–2), 49–65

    Article  Google Scholar 

  • Han, S. (2017). The 3D electrical lithosphere structure of the South China and its tectonic implications (in Chinese with English abstract). Jilin University.

    Google Scholar 

  • Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-Curve. SIAM Review, 34(4), 561–580

    Article  Google Scholar 

  • Heise, W., & Pous, J. (2001). Effects of anisotropy on the two-dimensional inversion procedure. Geophysical Journal International, 147(3), 610–621. https://doi.org/10.1046/j.0956-540x.2001.01560.x

    Article  Google Scholar 

  • Husein, A. I., Al-Homoud, A. S., Al-Tarazi, E., & Nusier, O. K. (1995). Probabilistic seismogenic ground motion hazard assessment of Karak city in Jordan. Environmental and Engineering Geoscience, 1(2), 207–218

    Article  Google Scholar 

  • Hyndman, R. D., & Shearer, P. M. (1989). Water in the lower continental crust: Modelling magnetotelluric and seismic reflection results. Geophysical Journal International, 98(2), 343–365

    Article  Google Scholar 

  • Ichiki, M., Mishina, M., Goto, T., Oshiman, N., Sumitomo, N., & Utada, H. (1999). Magnetotelluric investigations for the seismically active area in Northern Miyagi Prefecture, northeastern Japan. Earth, Planets and Space, 51(5), 351–361

    Article  Google Scholar 

  • Ide, S. (2019). Frequent observations of identical onsets of large and small earthquakes. Nature, 573(7772), 112–116

    Article  Google Scholar 

  • Ji, S. C., Wang, Q., Xia, B., & Xu, Z. Q. (2006). Generalized mixture rule and its applications to rheology of the Earth materials. Acta Petrologica Sinica, 22(7), 2067–2080 (in Chinese).

    Google Scholar 

  • Jones, A. G. (1986). Parkinson’s pointers’ potential perfidy! Geophysical Journal of the Royal Astronomical Society., 87, 1215–1224. https://doi.org/10.1111/j.1365-246X.1986.tb01992.x

    Article  Google Scholar 

  • Jones, A. G. (1993). Electromagnetic images of modern and ancient subduction zones. Tectonophysics, 219(1–3), 29–45

    Article  Google Scholar 

  • Jones, A. G. (1999). Imaging the continental upper mantle using electromagnetic methods. Developments in Geotectonics, 24, 57–80. https://doi.org/10.1016/S0419-0254(99)80005-6

  • Kirkby, A., Heinson, G., Holford, S., & Thiel, S. (2015). Mapping fractures using 1D anisotropic modelling of magnetotelluric data: A case study from the Otway Basin, Victoria, Australia. Geophysical Journal International, 201(3), 1961–1976. https://doi.org/10.1093/gji/ggv116

    Article  Google Scholar 

  • Krieger, L., & Peacock, J. R. (2014). MTpy: A Python toolbox for magnetotellurics. Computers and Geosciences, 72, 167–175. https://doi.org/10.1016/J.CAGEO.2014.07.013

    Article  Google Scholar 

  • Lasaga, A. C., & Rye, D. M. (1993). Fluid flow and chemical reaction kinetics in metamorphic systems. American Journal of Science, 293(5), 361–404

    Article  Google Scholar 

  • Li, S. G., & Zhao, Y. C. (1926). The stratification and relationship among the coal system of Paleozoic in northern China (in Chinese). Bulletin of the Geological Society of China, 5(2), 107–134

  • Li, Y., Yu, Y., Shen, J., Shao, B., Qi, G., & Deng, M. (2016). Active faults and seismogenic models for the Urumqi city, Xinjiang Autonomous Region, China. Earthquake Science, 29(3), 173–184

    Article  Google Scholar 

  • Liebscher, A. (2010). Aqueous fluids at elevated pressure and temperature. Geofluids, 10(1–2), 3–19

    Article  Google Scholar 

  • Liu, S., Heller, P. L., & Zhang, G. (2003). Mesozoic basin development and tectonic evolution of the Dabieshan orogenic belt, central China. Tectonics, 22, 4

    Article  Google Scholar 

  • Lukie, T. D., Ardies, G. W., Dalrymple, R. W., & Zaitlin, B. A. (2002). Alluvial architecture of the Horsefly unit (Basal Quartz) in southern Alberta and northern Montana: Influence of accommodation changes and comtemporaneous faulting. Bulletin of Canadian Petroleum Geology, 50(1), 73–91. https://doi.org/10.2113/50.1.73

    Article  Google Scholar 

  • Ogawa, Y., Mishina, M., Goto, T., Satoh, H., Oshiman, N., Kasaya, T., & Takahashi, Y. (2001). Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan back arc. Geophysical Research Letters, 28(19), 3741–3744

    Article  Google Scholar 

  • Ogawa, Y., Takakura, S., & Honkura, Y. (2002). Resistivity structure across Itoigawa-Shizuoka tectonic line and its implications for concentrated deformation. Earth, Planets and Space, 54(11), 1115–1120

    Article  Google Scholar 

  • Ogawa, Y., & Uchida, T. (1996). A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophysical Journal International, 126(1), 69–76. https://doi.org/10.1111/j.1365-246X.1996.tb05267.x

    Article  Google Scholar 

  • Pace, B., Peruzza, L., Lavecchia, G., & Boncio, P. (2006). Layered seismogenic source model and probabilistic seismic-hazard analyses in central Italy. Bulletin of the Seismological Society of America, 96(1), 107–132

    Article  Google Scholar 

  • Parkinson, W. D. (1962). The influence of continents and oceans on geomagnetic variations. Geophysical Journal International, 6(4), 441–449. https://doi.org/10.1111/j.1365-246X.1962.tb02992.x

    Article  Google Scholar 

  • Peng, Y. X. (2020). The shale gas accumulation conditions of Taiyuan Formation in the Southern North China Basin. China University of Geosciences (Beijing)

  • Ricardo, A. C., Jose, R. J., José, F., Gomez-Trevino, E., & Suarez-Vidal, F. (2011). Electrical resistivity imaging of a seismic region in northern Baja California, Mexico. Geofísica Internacional, 50, 23–39

    Google Scholar 

  • Rice, J. R. (1992). Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. International geophysics. Academic Press, 51, 475–503

    Google Scholar 

  • Rodi, W., & Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1), 174–187

    Article  Google Scholar 

  • Rokityansky, I. I., & Ingerov, A. I. (1999). Conductive structure of Ukrainian Carpathians from EM observations. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(9), 849–852

    Article  Google Scholar 

  • Scholz, C. H. (1990). The mechanics of earthquakes and faulting. Cambridge University Press.

    Google Scholar 

  • Selway, K. (2014). On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surveys in Geophysics, 35(1), 219–257

    Article  Google Scholar 

  • Sladen, A., Tavera, H., Simons, M., Avouac, J. P., Konca, A. O., Perfettini, H., & Cavagnoud, R. (2010). Source model of the 2007 Mw 8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts. Journal of Geophysical Research: Solid Earth, 115, B2

    Article  Google Scholar 

  • Song, C. Z., Zhang, G. W., Ren, S. L., Li, J. H., & Huang, W. C. (2009). The research on deformation features of some structural zones in the Qinling-Dabieshan orogenic belt (in Chinese with English abstract). Journal of Northwest University (Natural Science Edition), 39(3), 368–380

    Google Scholar 

  • Song, P., Teng, J., Zhang, X., Liu, Y., Si, X., Ma, X., & Dong, X. (2018). Flyover crustal structures beneath the Qinling Orogenic Belt and its tectonic implications. Journal of Geophysical Research: Solid Earth, 123(8), 6703–6718

    Google Scholar 

  • Teng, J. W., Li, S. L., Zhang, Y. Q., Wang, F. Y., Pi, J. L., Zhao, J. R., Zhang, C. K., Qiao, Y. H., Hu, G. Z., & Yan, Y. F. (2014). Fine velocity structures and deep processes in crust and mantle of the Qinling orogenic belt and the adjacent North China craton and Yangtze craton (in Chinese with English abstract). Chinese Journal of Geophysics, 57(10), 3154–3157

    Google Scholar 

  • Tian, J. C., Zhang, X., Xu, M., Shi, G., Zhu, Y. T., Xia, Q. S., Wang, F., Yang, W., Huang, L., He, M. X., Yang, B., Guo, S. T., Cao, J. K., Yan, Y. X., & Du, J. B. (2010). Characteristics and temporal and spatial distributions of sequence boundary of Qingbaikou-Jurassic in South Huabei Basin (in Chinese with English abstract). Journal of Earth Sciences and Environment, 32(4), 331–337

    Google Scholar 

  • Tian, Y., Zhao, D. P., Sun, R. M., & Teng, J. W. (2007). The 1992 Landers earthquake: Effect of crustal heterogeneity on earthquake generation (in Chinese with English abstract). Chinese Journal of Geophysics, 50(5), 1488–1496

    Article  Google Scholar 

  • Tikhonov, A. N. (1950). The determination of the electrical properties of deep layers of the Earth’s crust in Russian. Doklady Nauk, 73, 295–297

    Google Scholar 

  • Ucok, H., Ershaghi, I., & Olhoeft, G. R. (1980). Electrical resistivity of geothermal brines. Journal of Petroleum Technology, 32(04), 717–727

    Article  Google Scholar 

  • Unsworth, M., Bedrosian, P., Eisel, M., Egbert, G., & Siripunvaraporn, W. (2000). Along strike variations in the electrical structure of the San Andreas Fault at Parkfield, California. Geophysical Research Letters, 27(18), 3021–3024

    Article  Google Scholar 

  • Unsworth, M. J., Jones, A. G., Wei, W., Marquis, G., Gokarn, S. G., Spratt, J. E., & Shenghui, L. (2005). Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438(7064), 78

    Article  Google Scholar 

  • Ussher, G., Harvey, C., Johnstone, R., & Anderson, E. (2000) Understanding the resistivities observed in geothermal systems. In Proceedings world geothermal congress (pp. 1915–1920). Kyushu.

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the Northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368

    Article  Google Scholar 

  • Wang, B., & Song, Z. T. (1993). Geological interpretation of magnetotelluric sounding data from sough margin of the North China basin (in Chinese with English abstract). Oil Geophysical Prospecting, 28(3), 333–338

    Google Scholar 

  • Wang, C. Y., Zhang, X. K., Lin, Z. Y., Wu, Q. J., & Zhang, Y. S. (1997). Crustal structure beneath the Xingtai earthquake area in North China and its tectonic implications. Tectonophysics, 274(4), 307–319

    Article  Google Scholar 

  • Wang, F. Z., Lu, F. X., Sun, P., & Zhang, Z. M. (1995). The petrology model of the geoscience transection, for the continental lithosphere beneath Luoyan-Yichuan-Shiyan-Zigui, Qinling, China (in Chinese with English abstract). Acta Petrologica Sinica, 11(2), 227–241

    Google Scholar 

  • Wang, M. (2020). Mesoproterozoic Stratigraphic Characteristics and Sedimentary Paleogeography in South Margin of the North China Craton (in Chinese with English abstract). Beijing:China University of Geosciences (Beijing).

  • Weaver, J. T., Agarwal, A. K., & Lilley, F. E. M. (2000). Characterization of the magnetotelluric tensor in terms of its invariants. Geophysical Journal International, 141, 321–336

    Article  Google Scholar 

  • Whitney, J. A. (1988). The origin of granite: The role and source of water in the evolution of granitic magmas. Geological Society of America Bulletin, 100(12), 1886–1897

    Article  Google Scholar 

  • Xia, B., Thybo, H., & Artemieva, I. M. (2017). Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis. Journal of Geophysical Research: Solid Earth, 122(7), 5181–5207

    Article  Google Scholar 

  • Xiao, Q. B. (2006). Electrical structure study of the crust-upper mantle in Dabie-Sulu orogen (in Chinese with English abstract). Institute of Geology.

    Google Scholar 

  • Xin, H. L., Zhang, H. J., Kang, M., He, R. Z., Gao, L., & Gao, J. (2019). High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography. Seismological Research Letters, 90(1), 229–241. https://doi.org/10.1785/0220180209

  • Xu, H. L., Zhao, Z. J., Yang, Y. N., & Tang, Z. W. (2003). Structural pattern and structural style of the southern North China Basin (in Chinese with English abstract). Acta Geoscientia Sinica, 24(1), 27–33

    Google Scholar 

  • Xu, M. C., & Wang, Q. H. (1994). Eastern Qinling seismic reflection profiling (in Chinese with English abstract). Acta Geophysica Sinica, 37(6), 749–758

    Google Scholar 

  • Xu, S., Unsworth, M. J., Hu, X., & Mooney, W. D. (2019). Magnetotelluric evidence for asymmetric simple shear extension and lithospheric thinning in South China. Journal of Geophysical Research: Solid Earth, 124(1), 104–124

    Article  Google Scholar 

  • Xuan, S., Jin, S., Chen, Y., & Wang, J. (2019). insight into the preparation of the 2016 MS 6.4 Menyuan earthquake from terrestrial gravimetry-derived crustal density changes. Scientific Reports, 9(1), 1–10

    Article  Google Scholar 

  • Yang, B., Hu, X. Y., Lin, W. L., Liu, S., & Fang, H. (2019). Exploration of permafrost with audio-magnetotelluric data for gas hydrates in the Juhugeng Mine of the Qilian Mountains, China. Geophysics, 84, 1–50. https://doi.org/10.1190/geo2018-0469.1

    Article  Google Scholar 

  • Yang, G. C., Yang, X. Z., & Xia, Q. K. (2012a). Temporal variation of water content in the lower continental crust: Evidence from feldspar in mafic granulites (in Chinese with English abstract). Acta Petrologica et Mineralogica, 31(4), 565–577

    Google Scholar 

  • Yang, X. Z., Xia, Q. K., Yu, H. M., & Hao, Y. T. (2006). The possible effect of hydrogen on the high electrical conductivity in the lower continental crust (in Chinese with English abstract). Advances in Earth Science, 21(1), 437–467

    Google Scholar 

  • Yang, Y., Ritzwoller, M. H., Zheng, Y., Shen, W., Levshin, A. L., & Xie, Z. (2012b). A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. Journal of Geophysical Research: Solid Earth, 117, B4

    Article  Google Scholar 

  • Yin, A., & Nie, S. Y. (1993). An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia. Tectonics, 12(4), 801–813

    Article  Google Scholar 

  • Yoshino, T., & Noritake, F. (2011). Unstable graphite films on grain boundaries in crustal rocks. Earth and Planetary Science Letters, 306(3–4), 186–192

    Article  Google Scholar 

  • Yu, H. Z., Lu, F. L., Guo, Q. X., Lu, W. Z., Wu, J. Y., & Han, S. H. (2005). Proto-sediment basin types and tectonic evolution in the southern edge of North China Plate (in Chinese with English abstract). Petroleun Geology and Experiment, 21(2), 111–117

    Google Scholar 

  • Yu, Y., & Wu, X. (2010). Study of the generalized mixture rule for determining effective conductivity of two-phase stochastic models. Applied Geophysics, 7, 210–216. https://doi.org/10.1007/s11770-010-0248-3

    Article  Google Scholar 

  • Yuan, X. C., Ren, J. S., Xu, M. C., & Tang, W. B. (2002). Reflection seismic profile from Dengxian to Nanzhang, Eastern Qinling, and its teconic implication (in Chinese with English abstract). Geology in China., 29(1), 14–19

    Google Scholar 

  • Yuan, X. C., Xu, M. C., Wang, Q. H., & Tang, W. B. (1994). Eastern Qinling seismic reflection profiling (in Chinese with English abstract). Chinese Journal of Geophysics, 37, 749–758

  • Zhai, M. G., & Fan, Q. C. (2002). Mesozoic replacement of bottom crust in North China Craton: Anorogenic mantle-crust interaction. Acta Petrologica Sinica, 18(1), 1–8

    Google Scholar 

  • Zhan, Y., Zhao, G., Unsworth, M., Wang, L., Chen, X., Li, T., Wang, Y. (2013). Deep structure beneath the southwestern section of the Longmenshan fault zone and seimogenetic context of the 4.20 Lushan M S 7.0 earthquake. Chinese Science Bulletin, 58(28–29), 3467–3474.

  • Zhang, D. T., Feng, J. Z., Li, L., Meng, X. F., He, J., Liu, Z. Y., & Xu, W. C. (2015). Discussion on post-collision lithospheric evolution and Au-Mo mineralization in the southern margin of the North China Craton (in Chinese with English abstract). Geotectonica et Metallogenia., 39(2), 300–313

    Google Scholar 

  • Zhang, G. W., Meng, Q. R., & Lai, S. C. (1995a). Tectonic of Qinling Orgenic Belt (in Chinese). Science in China (Series B), 25(9), 994–1003

    Google Scholar 

  • Zhang, G., Wang, S., Li, L., Zhang, X., & Ma, H. (2002). Focal depth research of earthquakes in Mainland China: Implication for tectonics. Chinese Science Bulletin, 47(12), 969–974

    Google Scholar 

  • Zhang, G. W., Zhang, Z. Q., & Dong, Y. P. (1995b). Nature of main tectono-lithostratigraphic units of the Qinling orogen: Implications for the tectonic evolution (in Chinese with English abstract). Acta Petrological Sinica, 11(2), 101–114

    Google Scholar 

  • Zhang, Y. S. (2019). Magmatism of Phanerozoic granitoids in North Qinlin terrane. University of Science and Technology of China.

    Google Scholar 

  • Zhu, A. L., Xu, X. W., Ren, Y., Sun, D. J., Wang, P., Yu, H. Y., & Song, X. Q. (2017). Relocation of the background seismicity and investigation on the buried active faults in southeasten China (in Chinese with English abstract). Seismology and Geology, 39(1), 67–80

    Google Scholar 

Download references

Acknowledgements

We thank Professor Yan Zhan (Institute of Geology, China Earthquake Administrator) and other colleagues for access to MT data and measurements. We thank the editor Agata Siniscalchi and two anonymous reviewers for their valuable comments and suggestions, which greatly improved the quality of the manuscript. The seismic data used here were provided by the China Earthquake Data Center (http://data.earthquake.cn, accessed October 2019). This study was supported by the National Natural Science Foundation of China (Grant number 41704058).

Funding

The National Natural Science Foundation of China (Grant number 41704058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Xin, Hl., Kang, J. et al. Crustal Structure and Seismogenic Background Beneath Zhumadian, Henan, China: Evidence from Magnetotelluric Data. Pure Appl. Geophys. 178, 1643–1659 (2021). https://doi.org/10.1007/s00024-021-02729-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02729-8

Keywords

Navigation