Skip to main content
Log in

Regional Assimilation of GPS-Derived TEC into GIMs

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Global ionosphere models may not be accurate enough in regions where there are insufficient observations. Therefore, there is strong interest in regional ionosphere modeling using observations from dual-frequency Global Navigation Satellite System (GNSS) receivers in such regions. This paper presents a data assimilation method for hourly total electron content (TEC) modeling along with estimation of the receivers’ differential code biases (DCBs). For this purpose, first, initial values for slant TEC (STEC) and the receivers’ DCBs are estimated utilizing global ionosphere maps (GIMs). Second, STEC is expanded to a linear combination of spherical radial basis functions with time-dependent coefficients to reduce the number of unknowns, and a constrained least-squares adjustment is applied to resolve the corrected STEC and DCB values in the study area using observations from dual-frequency GNSS receivers. Third, the resolved STEC at ionospheric pierce points (IPPs) are converted to vertical TEC (VTEC) using a mapping function and assimilated into the background provided by spatial and temporal interpolation of GIM. Retrieved VTECs are weighted according to the satellites’ elevation angles, and an objective function is defined to determine the background’s covariance matrix. In this study, the Iranian permanent Global Positioning System (GPS) network is used to construct the regional hourly VTEC model and calculate hourly DCB variations. The proposed method is validated in two ways. First, some of the VTEC values are excluded from the dataset for use as test data and compared with modeling results. The root mean square (RMS) of the constructed regional assimilative model on test data is significantly better than GIM. Second, the RINEX file of Tehran station, whose observations did not play a role in modeling, is corrected using the regional model. The single-frequency positioning results with corrected observations show much better accuracy than GIMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

All data generated during this study are included in this article. Satellites’ DCBs, GIMs in IONEX format, precise orbits, Earth rotation parameters, and satellites’ clock corrections are all published by CODE and publicly available from: http://ftp.aiub.unibe.ch/CODE/.

References

  • Amerian, Y., Voosoghi, B., & Hossainali, M. M. (2013). Regional ionosphere modeling in support of IRI and wavelet using GPS observations. Acta Geophysica, 61(5), 1246–1261.

    Article  Google Scholar 

  • Arikan, F., Nayir, H., Sezen, U., & Arikan, O. (2008). Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Science, 43(4), 1–13. https://doi.org/10.1029/2007RS003785.

    Article  Google Scholar 

  • Bannister, R. N. (2001). Elementary 4d-var. Reading: University of Reading.

    Google Scholar 

  • Bouya, Z., Terkildsen, M., & Neudegg, D. (2010). Regional GPS-based ionospheric TEC model over Australia using spherical cap harmonic analysis. In 38th COSPAR scientific assembly, 2010 (vol. 38, pp. 4).

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chen, W., Hu, C., Gao, S., Chen, Y., Ding, X., & Simon, C.-w. K. (2004). Absolute ionospheric delay estimation based on GPS PPP and GPS active network. In 2004 International Symposium on GNSS/GPS, Sydney, Australia, 2004.

  • Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS Software version 5.2. User manual, Astronomical Institute (p. 72297). Bern: University of Bern. https://doi.org/10.7892/boris.

    Book  Google Scholar 

  • Dettmering, D., Heinkelmann, R., & Schmidt, M. (2011). Systematic differences between VTEC obtained by different space-geodetic techniques during CONT08. Journal of Geodesy, 85(7), 443. https://doi.org/10.1007/s00190-011-0473-z.

    Article  Google Scholar 

  • Durmaz, M., & Karslioglu, M. O. (2015). Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS). Journal of Geodesy, 89(4), 347–360.

    Article  Google Scholar 

  • Durmaz, M., & Karslioğlu, M. O. (2011). Non-parametric regional VTEC modeling with multivariate adaptive regression B-splines. Advances in Space Research, 48(9), 1523–1530.

    Article  Google Scholar 

  • Durmaz, M., Karslioglu, M. O., & Nohutcu, M. (2010). Regional VTEC modeling with multivariate adaptive regression splines. Advances in Space Research, 46(2), 180–189.

    Article  Google Scholar 

  • Etemadfard, H., & Hossainali, M. M. (2016). Spherical Slepian as a new method for ionospheric modeling in arctic region. Journal of Atmospheric and Solar-Terrestrial Physics, 140, 10–15.

    Article  Google Scholar 

  • Ghoddousi-Fard, R., Héroux, P., Danskin, D., & Boteler, D. (2011). Developing a GPS TEC mapping service over Canada. Space Weather, 9, S06D11. https://doi.org/10.1029/2010SW000621.

    Article  Google Scholar 

  • Hansen, P. C. (1994). Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems. Numerical algorithms, 6(1), 1–35.

    Article  Google Scholar 

  • Hernández-Pajares, M., Juan, J. M., Sanz, J., Orús, R., García-Rodríguez, A., & Colombo, O. L. (2004). Wide area real time kinematics with Galileo and GPS signals. Europe, 17, 03.

    Google Scholar 

  • Hubbert, S., Lê Gia, Q. T., & Morton, T. M. (2015). Spherical radial basis functions, theory and applications. Berlin: Springer.

    Book  Google Scholar 

  • Komjathy, A. (1997). Global ionospheric total electron content mapping using the Global Positioning System. Fredericton: University of New Brunswick.

    Google Scholar 

  • Lao-Sheng, L. (2001). Remote sensing of ionosphere using GPS measurements. In The 22nd Asian conference on remote sensing, Singapore, 2001 (pp. 5–9).

  • Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying. Oxford: Wiley.

    Book  Google Scholar 

  • Li, J., & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists.

  • Li, M., Yuan, Y., Wang, N., Liu, T., & Chen, Y. (2018). Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps. Journal of Geodesy, 92(8), 889–903. https://doi.org/10.1007/s00190-017-1101-3.

    Article  Google Scholar 

  • Liao, X. (2001). Carrier phase based ionosphere recovery over a regional area GPS network. Calgary: University of Calgary.

    Google Scholar 

  • Liu, J., Chen, R., An, J., Wang, Z., & Hyyppa, J. (2014). Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle. Journal of Geophysical Research: Space Physics, 119(1), 601–619.

    Google Scholar 

  • Liu, J., Chen, R., Kuusniemi, H., Wang, Z., Zhang, H., & Yang, J. (2009). Mapping the regional ionospheric TEC using a spherical cap harmonic model and IGS products in high latitudes and the arctic region. In Proceedings of IAIN 2009 World Congress, Stockholm, 2009.

  • Liu, J., Chen, R., Wang, Z., & Zhang, H. (2011). Spherical cap harmonic model for mapping and predicting regional TEC. GPS Solutions, 15(2), 109–119.

    Article  Google Scholar 

  • Liu, A., Li, Z., Wang, N., Yuan, C., & Yuan, H. (2020). Analysis of the short-term temporal variation of differential code bias in GNSS receiver. Measurement, 153, 107448.

    Article  Google Scholar 

  • Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. In Annales Geophysicae, 2003 (vol. 21, pp. 2083–2093, vol. 10).

  • Makela, J. J., Kelley, M. C., Sojka, J. J., Pi, X., & Mannucci, A. J. (2001). GPS normalization and preliminary modeling results of total electron content during a midlatitude space weather event. Radio Science, 36(2), 351–361.

    Article  Google Scholar 

  • Mautz, R., Ping, J., Heki, K., Schaffrin, B., Shum, C., & Potts, L. (2005). Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets. Journal of Geodesy, 78(11–12), 662–667.

    Article  Google Scholar 

  • Nohutcu, M., Karslioglu, M., & Schmidt, M. (2010). B-spline modeling of VTEC over Turkey using GPS observations. Journal of Atmospheric and Solar-Terrestrial Physics, 72(7–8), 617–624.

    Article  Google Scholar 

  • Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., & Miyazaki, S. (2002). A new technique for mapping of total electron content using GPS network in Japan. Earth, Planets and Space, 54(1), 63–70.

    Article  Google Scholar 

  • Rabier, F., & Liu, Z. (2003). Variational data assimilation: theory and overview. In ECMWF Seminar on Recent developments in data assimilation for atmosphere and ocean, 2003.

  • Schaback, R. (2007). A practical guide to radial basis functions. Electronic Resource, 11, 1–2.

    Google Scholar 

  • Schaer, S. (1999). Mapping and predicting the Earth’s ionosphere using the Global Positioning System (vol. 59). Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich.

  • Schaer, S., Beutler, G., Mervart, L., Rothacher, M., & Wild, U. (1996). Global and regional ionosphere models using the GPS double difference phase observable. In Proceedings of the IGS Workshop “special topics and new directions”, 1996.

  • Schmidt, M., Dettmering, D., Mößmer, M., Wang, Y., & Zhang, J. (2011). Comparison of spherical harmonic and B spline models for the vertical total electron content. Radio Science, 46(6). https://doi.org/10.1029/2010RS004609

  • Sharifi, M. A., & Farzaneh, S. (2015). Regional TEC dynamic modeling based on Slepian functions. Advances in Space Research, 56(5), 907–915.

    Article  Google Scholar 

  • Wright, S., & Nocedal, J. (1999). Numerical optimization. Springer Science, 35(67–68), 7.

    Google Scholar 

  • Zhang, Y., Wu, F., Kubo, N., & Yasuda, A. (2003). TEC measurement by single dual-frequency GPS receiver. In Proceedings of 2003 international symposium on GPS/GNSS (pp. 351–358).

Download references

Acknowledgements

The authors acknowledge the NCC (National Cartographic Center of Iran) for providing Iranian Permanent GPS Network (IPGN) data and the Center for Orbit Determination in Europe (CODE) for providing GIMs and satellites’ DCBs.

Author information

Authors and Affiliations

Authors

Contributions

Research design: Yazdan Amerian and Hany Mahbuby; Analysis: Hany Mahbuby; Writing original draft preparation: Hany Mahbuby; Writing review and editing: Yazdan Amerian; Supervision: Yazdan Amerian.

Corresponding author

Correspondence to Yazdan Amerian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahbuby, H., Amerian, Y. Regional Assimilation of GPS-Derived TEC into GIMs. Pure Appl. Geophys. 178, 1317–1337 (2021). https://doi.org/10.1007/s00024-021-02681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02681-7

Keywords

Navigation