Skip to main content
Log in

On the Influence of Slopes, Source, Seabed and Water Column Properties on T Waves: Generation at Shore

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The term T waves is generally associated with acoustic waves generated by seismic events that subsequently travel horizontally in the ocean at the speed of sound. In this paper, we use a time-domain spectral-element method to perform a parametric study of the influence of seafloor slope, source position and media properties for a typical (downslope) T-wave generation scenario. We find that the energy and duration of these waves are particularly sensitive to the environment. In particular, the slopes and physical characteristics of the seabed play a crucial role for both the generation and the conversion of these waves. Likewise, the depth and position of the earthquake relative to the slope is of great importance, with the presence of privileged areas for the generation of T waves, which we map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This could happen, though, in the case of an earthquake occurring right below a volcano or a seamount, but we are not interested in these specific cases here

  2. In the case MED the reflection peak mentionned is around 22\(^{\circ }\) while in the case HIGH it is around 27\(^{\circ }\) (see Fig. 5, bottom)

  3. As the parabolic equation does not take into account back-scattered energy, they do not face the problem of multiple reflections between the slope and the symmetry axis that we mentioned and that prevented us from using axisymmetric calculations in our case.

  4. In the case of triangular signals this effective duration is equal to their actual duration.

  5. One could also think about a diffraction phenomenon on the sharp edges of the slope. Although we do observe this phenomenon in our simulations, the diffracted signals have negligible amplitude compared to the reflected ones

References

  • Adams, R. D. (1979). T-phase recordings at Rarotonga from underground nuclear explosions. Geophysical Journal of the Royal Astronomical Society, 58(2), 361–369. https://doi.org/10.1111/j.1365-246X.1979.tb01030.x.

    Article  Google Scholar 

  • Båth, M. (1954). A study of T phases recorded at the Kiruna seismograph station. Tellus, 6(1), 63–72.

    Google Scholar 

  • Blackman, D. K., Nishimura, C. E., & Orcutt, J. A. (2000). Seismoacoustic recordings of a spreading episode on the Mohns Ridge. Journal of Geophysical Research: Solid Earth, 105(B5), 10961–10973.

    Google Scholar 

  • Boatwright, J., & Choy, G. L. (1986). Teleseismic estimates of the energy radiated by shallow earthquakes. Journal of Geophysics Research, 91(B2), 2095–2112. https://doi.org/10.1029/JB091iB02p02095.

    Article  Google Scholar 

  • Bohnenstiehl, D. R., Dziak, R. P., Matsumoto, H., & Lau, T. K. A. (2013). Underwater acoustic records from the March 2009 eruption of Hunga Ha’apai-Hunga Tonga volcano in the Kingdom of Tonga. Journal of Volcanology and Geothermal Research, 249, 12–24. https://doi.org/10.1016/j.jvolgeores.2012.08.014.

    Article  Google Scholar 

  • Bottero, A., Cristini, P., Komatitsch, D., & Asch, M. (2016). An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics. Journal of the Acoustical Society of America, 140(5), 3520–3530. https://doi.org/10.1121/1.4965964.

    Article  Google Scholar 

  • Bottero, A., Cristini, P., Komatitsch, D., & Brissaud, Q. (2018). Broadband transmission losses and time dispersion maps from time-domain numerical simulations in ocean acoustics. The Journal of the Acoustical Society of America, 144(3), EL222–EL228.

    Google Scholar 

  • Carcione, J. M., & Helle, H. B. (2004). The physics and simulation of wave propagation at the ocean bottom. Geophysics, 69(3), 825–839.

    Google Scholar 

  • Chapman, N. R., & Marrett, R. (2006). The directionality of acoustic T-phase signals from small magnitude submarine earthquakes. Journal of the Acoustical Society of America, 119(6), 3669–3675. https://doi.org/10.1121/1.2195073.

    Article  Google Scholar 

  • Cowen, J. P., Baker, E. T., & Embley, R. W. (2004). Detection of and response to mid-ocean ridge magmatic events: Implications for the subsurface biosphere. In The Subseafloor Biosphere at Mid-Ocean Ridges (pp. 227–243).

  • Cristini, P., & Komatitsch, D. (2012). Some illustrative examples of the use of a spectral-element method in ocean acoustics. Journal of the Acoustical Society of America, 131(3), EL229–EL235. https://doi.org/10.1121/1.3682459.

    Article  Google Scholar 

  • De Groot-Hedlin, C. (2005). Estimation of the rupture length and velocity of the Great Sumatra earthquake of dec 26, 2004 using hydroacoustic signals. Geophysical Research Letters,. https://doi.org/10.1029/2005GL022695.

    Article  Google Scholar 

  • De Groot-Hedlin, C., Blackman, D., & Orcutt, J. (2004). The use of hydroacoustic phases for the detection of oceanic events: Observations and numerical modeling. Scripps Institution Of Oceanography La Jolla CA: Tech. rep.

  • De Groot-Hedlin, C., & Orcutt, J. A. (1999). Synthesis of earthquake-generated T-waves. Geophysical Research Letters, 26(9), 1227–1230. https://doi.org/10.1029/1999GL900205.

    Article  Google Scholar 

  • De Groot-Hedlin, C., & Orcutt, J. A. (2000). Detection of T-phases at island seismic stations: Dependence on seafloor slope, seismic velocity and roughness. Scripps Institution Of Oceanography La Jolla CA: Tech. rep.

  • De Groot-Hedlin, C., & Orcutt, J. A. (2001). Monitoring the comprehensive nuclear-test-ban-treaty: Hydroacoustics. Berlin: Springer.

    Google Scholar 

  • Delaney, J. R., Kelley, D. S., Lilley, M. D., Butterfield, D. A., Baross, J. A., Wilcock, W. S. D., et al. (1998). The quantum event of oceanic crustal accretion: Impacts of diking at mid-ocean ridges. Science, 281(5374), 222–230.

    Google Scholar 

  • Dietz, R. S., & Sheehy, M. J. (1954). Transpacific detection of Myojin volcanic explosions by underwater sound. GSA Bulletin, 65(10), 941. https://doi.org/10.1130/0016-7606(1954)65[941:TDOMVE]2.0.CO;2.

    Article  Google Scholar 

  • Duennebier, F. K., & Johnson, R. H. (1967). T-phase sources and earthquake epicenters in the Pacific basin. Tech. rep.: Hawaii Institute Of Geophysics University of Hawaii Honolulu.

  • Dziak, R. P. (2001). Empirical relationship of T-wave energy and fault parameters of northeast Pacific ocean earthquakes. Geophysical Research Letters, 28(13), 2537–2540. https://doi.org/10.1029/2001GL012939.

    Article  Google Scholar 

  • Dziak, R. P., Bohnenstiehl, D. R., & Smith, D. K. (2012). Hydroacoustic monitoring of oceanic spreading centers: Past, present, and future. Oceanography, 25(1), 116–127.

    Google Scholar 

  • Dziak, R. P., Hammond, S. R., & Fox, C. G. (2011). A 20-year hydroacoustic time series of seismic and volcanic events in the northeast Pacific ocean. Oceanography, 24, 280–293.

    Google Scholar 

  • Evers, L. G., & Snellen, M. (2015). Passive probing of the sound fixing and ranging channel with hydro-acoustic observations from ridge earthquakes. Journal of the Acoustical Society of America, 137(4), 2124–2136.

    Google Scholar 

  • Ewing, M., Press, F., & Worzel, J. L. (1952). Further study of the T phase. Bulletin Seismology Society of America, 42, 37–51.

    Google Scholar 

  • Fichtner, A. (2010). Full Seismic Waveform Modelling and Inversion. Advances in Geophysical and Environmental Mechanics and Mathematics (p. 343). Berlin: Springer.

    Google Scholar 

  • Fox, C. G., & Dziak, R. P. (1998). Hydroacoustic detection of volcanic activity on the Gorda ridge, February–March 1996. Deep Sea Research Part II: Topical Studies in Oceanography, 45(12), 2513–2530. https://doi.org/10.1016/S0967-0645(98)00081-2.

    Article  Google Scholar 

  • Fox, C. G., Dziak, R. P., Matsumoto, H., & Schreiner, A. E. (1994). Potential for monitoring low-level seismicity on the Juan de Fuca Ridge using military hydrophone arrays. Marine Technology Society Journal, 27(4), 22–30.

    Google Scholar 

  • Fox, C. G., Matsumoto, H., & Lau, T. K. A. (2001). Monitoring Pacific Ocean seismicity from an autonomous hydrophone array. Journal of Geophysical Research: Solid Earth, 106(B3), 4183–4206.

    Google Scholar 

  • Fox, C. G., Radford, W. E., Dziak, R. P., Lau, T. K., Matsumoto, H., & Schreiner, A. E. (1995). Acoustic detection of a seafloor spreading episode on the juan de fuca ridge using military hydrophone arrays. Geophysical Research Letters, 22(2), 131–134.

    Google Scholar 

  • Frank, S. D., Collis, J. M., & Odom, R. I. (2015). Elastic parabolic equation solutions for oceanic T-wave generation and propagation from deep seismic sources. Journal of the Acoustical Society of America, 137(6), 3534–3543.

    Google Scholar 

  • Graeber, F. M., & Piserchia, P. F. (2004). Zones of T-wave excitation in the NE Indian ocean mapped using variations in backazimuth over time obtained from multi-channel correlation of IMS hydrophone triplet data. Geophysical Journal International, 158(1), 239–256.

    Google Scholar 

  • Guilbert, J., Vergoz, J., Schissele, E., Roueff, A., & Cansi, Y. (2005). Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the Mw = 9.0 Sumatra earthquake. Geophysical Research Letters,. https://doi.org/10.1029/2005GL022966.

    Article  Google Scholar 

  • Hammond, S. R., & Walker, D. A. (1991). Ridge event detection: T-phase signals from the Juan de Fuca spreading center. Marine Geophysical Researches, 13(4), 331–348. https://doi.org/10.1007/BF00366282.

    Article  Google Scholar 

  • Jamet, G., Guennou, C., Guillon, L., Mazoyer, C., & Royer, J. Y. (2013). T-wave generation and propagation: A comparison between data and spectral element modeling. Journal of the Acoustical Society of America, 134(4), 3376–3385.

    Google Scholar 

  • Jensen, F. B., Kuperman, W., Porter, M., & Schmidt, H. (2011). Computational Ocean Acoustics (2nd ed., p. 794). Berlin, Germany: Springer.

    Google Scholar 

  • Johnson, R. H. (1966). Routine location of T-phase sources in the Pacific. Bulletin of the Seismological Society of America, 56(1), 109–118.

    Google Scholar 

  • Johnson, R. H., Norris, R. A., & Duennebier, F. K. (1967). Abyssally generated T phases. Tech. rep.: Hawaii Institute Of Geophysics University of Hawaii Honolulu.

  • Johnson, R. H., & Northrop, J. (1966). A comparison of earthquake magnitude with T-phase strength. Bulletin of the Seismological Society of America, 56(1), 119–124.

    Google Scholar 

  • Johnson, R. H., Northrop, J., & Eppley, R. (1963). Sources of Pacific T phases. Journal of Geophysical Research, 68(14), 4251–4260. https://doi.org/10.1029/JZ068i014p04251.

    Article  Google Scholar 

  • Komatitsch, D., & Martin, R. (2007). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72(5), SM155–SM167.

    Google Scholar 

  • Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral-element method for 3-D seismic wave propagation. Geophysics Journal International, 139(3), 806–822. https://doi.org/10.1046/j.1365-246x.1999.00967.x.

    Article  Google Scholar 

  • Kosuga, M. (2011). Localization of T-wave energy on land revealed by a dense seismic network in japan. Geophysical Journal International, 187(1), 338–354.

    Google Scholar 

  • Koyanagi, S., Aki, K., Biswas, N., & Mayeda, K. (1995). Inferred attenuation from site effect-corrected T phases recorded on the island of Hawaii. Pure and Applied Geophysics, 144(1), 1–17.

    Google Scholar 

  • Lecoulant, J., Guennou, C., Guillon, L., & Royer, J. Y. (2019). Three-dimensional modeling of earthquake generated acoustic waves in the ocean in simplified configurations. The Journal of the Acoustical Society of America, 146(3), 2113–2123. https://doi.org/10.1121/1.5126009.

    Article  Google Scholar 

  • Linehan, S. J. D. (1940). Earthquakes in the West Indian region. Transactions American Geophysical Union, 21, 229–232.

    Google Scholar 

  • Matsumoto, H., Bohnenstiehl, D. R., Tournadre, J., Dziak, R. P., Haxel, J. H., Lau, T. K., et al. (2014). Antarctic icebergs: A significant natural ocean sound source in the southern hemisphere. Geochemistry, Geophysics, Geosystems, 15(8), 3448–3458.

    Google Scholar 

  • Metz, D., Watts, A. B., Grevemeyer, I., Rodgers, M., & Paulatto, M. (2016). Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc. Geophysical Research Letters, 43(4), 1529–1536. https://doi.org/10.1002/2015GL067259.

    Article  Google Scholar 

  • Munk, W. H. (1974). Sound channel in an exponentially stratified ocean, with application to SOFAR. Journal of the Acoustical Society of America, 55(2), 220–226.

    Google Scholar 

  • Niu, H., Reeves, E., & Gerstoft, P. (2017). Source localization in an ocean waveguide using supervised machine learning. Journal of the Acoustical Society of America, 142(3), 1176–1188. https://doi.org/10.1121/1.5000165.

    Article  Google Scholar 

  • Norris, R. A., & Johnson, R. H. (1969). Submarine volcanic eruptions recently located in the pacific by SOFAR hydrophones. Journal of Geophysical Research, 74(2), 650–664.

    Google Scholar 

  • Northrop, J. (1962). Evidence of dispersion in earthquake T phases. Journal of Geophysical Research, 67(7), 2823–2830. https://doi.org/10.1029/JZ067i007p02823.

    Article  Google Scholar 

  • Okal, E. A. (2001). Detached deep earthquakes: Are they really? Physics of the Earth and Planetary Interiors, 127(1), 109–143.

    Google Scholar 

  • Okal, E. A. (2003). T waves from the 1998 Papua New Guinea earthquake and its aftershocks: Timing the tsunamigenic slump. Pure and Applied Geophysics, 160(10), 1843–1863. https://doi.org/10.1007/s00024-003-2409-x.

    Article  Google Scholar 

  • Okal, E. A. (2007). The generation of T waves by earthquakes. Advanced Geophysics, 49, 1–65.

    Google Scholar 

  • Okal, E. A., & Talandier, J. (1997). T waves from the great 1994 Bolivian deep earthquake in relation to channeling of S wave energy up the slab. Journal of Geophysical Research: Solid Earth, 102(B12), 27421–27437. https://doi.org/10.1029/97JB02718.

    Article  Google Scholar 

  • Pan, J., & Dziewonski, A. M. (2005). Comparison of mid-oceanic earthquake epicentral differences of travel time, centroid locations, and those determined by autonomous underwater hydrophone arrays. Journal of Geophysical Research: Solid Earth, 110, B7.

    Google Scholar 

  • Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., et al. (2011). Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophysics Journal International, 186(2), 721–739. https://doi.org/10.1111/j.1365-246X.2011.05044.x.

    Article  Google Scholar 

  • Rosenkrantz, E., Bottero, A., Komatitsch, D., & Monteiller, V. (2019). A flexible numerical approach for non-destructive ultrasonic testing based on a time-domain spectral-element method: Ultrasonic modeling of lamb waves in immersed defective structures and of bulk waves in damaged anisotropic materials. NDT & E International, 101, 72–86.

    Google Scholar 

  • Salzberg, D. (2008). A hydro-acoustic solution to the local tsunami warning problem. In AGU fall meeting abstracts.

  • Schreiner, A. E., Fox, C. G., & Dziak, R. P. (1995). Spectra and magnitudes of T-waves from the 1993 earthquake swarm on the Juan de Fuca Ridge. Geophysical Research Letters, 22(2), 139–142. https://doi.org/10.1029/94GL01912.

    Article  Google Scholar 

  • Shurbet, D. H. (1955). Bermuda T phases with large continental paths. Bulletin of the Seismological Society of America, 45(1), 23–35.

    Google Scholar 

  • Shurbet, D. H., & Ewing, M. (1957). T phases at Bermuda and transformation of elastic waves. Bulletin of the Seismological Society of America, 47(3), 251–262.

    Google Scholar 

  • Sukhovich, A., Irisson, J. O., Perrot, J., & Nolet, G. (2014). Automatic recognition of T and teleseismic P waves by statistical analysis of their spectra: An application to continuous records of moored hydrophones. Journal of Geophysical Research: Solid Earth, 119(8), 6469–6485.

    Google Scholar 

  • Talandier, J., Hyvernaud, O., Reymond, D., & Okal, E. A. (2006). Hydroacoustic signals generated by parked and drifting icebergs in the southern Indian and Pacific Oceans. Geophysical Journal International, 165(3), 817–834.

    Google Scholar 

  • Talandier, J., & Okal, E. A. (1987). Seismic detection of underwater volcanism: The example of French Polynesia. Pure and Applied Geophysics, 125(6), 919–950.

    Google Scholar 

  • Talandier, J., & Okal, E. A. (1998). On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores. Bulletin Seismology Society America, 88(2), 621–632.

    Google Scholar 

  • Talandier, J., & Okal, E. A. (2016). A new source discriminant based on frequency dispersion for hydroacoustic phases recorded by T-phase stations. Geophysical Journal International, 206(3), 1784–1794. https://doi.org/10.1093/gji/ggw249.

    Article  Google Scholar 

  • Tolstoy, M., & Bohnenstiehl, D. R. (2005). Hydroacoustic constraints on the rupture duration, length, and speed of the great Sumatra-Andaman earthquake. Seismological Research Letters, 76(4), 419–425.

    Google Scholar 

  • Tolstoy, M., & Bohnenstiehl, D. R. (2006). Hydroacoustic contributions to understanding the December 26th 2004 great Sumatra-Andaman earthquake. Surveys in Geophysics, 27(6), 633–646. https://doi.org/10.1007/s10712-006-9003-6.

    Article  Google Scholar 

  • Tolstoy, I., & Ewing, M. (1950). The T phases of shallow-focus earthquakes. Bulletin Seismology Society America, 40, 25–51.

    Google Scholar 

  • Wadati, K., & Inouye, W. (1953). On the T phase of seismic waves observed in Japan. Proceeding Japan Academics, 29, 47–54.

    Google Scholar 

  • Wilcock, W. S. D., Stafford, K. M., Andrew, R. K., & Odom, R. I. (2014). Sounds in the ocean at 1–100 Hz. Annual Review of Marine Science, 6, 117–140.

    Google Scholar 

  • Williams, C. M., Stephen, R. A., & Smith, D. K. (2006). Hydroacoustic events located at the intersection of the Atlantis (30$^{\circ }$N) and Kane (23$^{\circ }$40’N) transform faults with the Mid-Atlantic ridge. Geochemistry, Geophysics, Geosystems, 7(6), 1–28. https://doi.org/10.1029/2005GC001127.

    Article  Google Scholar 

  • Xie, Z., Matzen, R., Cristini, P., Komatitsch, D., & Martin, R. (2016). A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms. Journal of the Acoustical Society of America, 140(1), 165–175. https://doi.org/10.1121/1.4954736.

    Article  Google Scholar 

Download references

Acknowledgements

D.K. would like to thank Jeroen Tromp for suggesting him to work on T waves, a long time ago. We thank also Emmanuel Le Clezio and Eric Rosenkrantz for their help in validating the reflection coefficients. We also thank Emile Okal and an anonymous reviewer for their useful comments that improved the manuscript. The Ph.D. grant of Alexis Bottero was awarded by ENS Cachan, France. This work was granted access to the French HPC resources of CINES under allocation #A0020407165 and #A0030410305, both made by GENCI, and of the Aix-Marseille Supercomputing Mesocenter under allocations #b025. We gratefully acknowledge the support of NVIDIA Corporation with the donation of hardware for this research through their Hardware Grant Request program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Bottero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottero, A., Cristini, P. & Komatitsch, D. On the Influence of Slopes, Source, Seabed and Water Column Properties on T Waves: Generation at Shore. Pure Appl. Geophys. 177, 5695–5711 (2020). https://doi.org/10.1007/s00024-020-02611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02611-z

Keywords

Navigation